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Abstract 
In this paper we extend the dual porosity streamline-based flow simulation method to complex 
geological grids containing both single and dual porosity gridblocks with multiple relative 
permeability regions.  We use the streamline dual porosity formalism of Di Donato et al.[1] in 
conjunction with the standard finite-difference simulation capillary pressure driven matrix-
fracture transfer model.[8]    

 
Geological heterogeneity and mixed single/dual porosity gridblocks lead to highly irregular cell 
volumes along each streamline and require extending the Di Donato et al. approach in two ways: 
(1) improve the discretization of the 1D problem along the streamlines by “binning” very small 
cells with larger ones rather than using a regular discretization; and (2) use an Adaptive-Implicit 
(AIM) formulation along the streamlines to cope with small cells experiencing large volume 
throughputs.  Regardless of how extreme the binning approach might be, an AIM method is still 
required because it is not possible to group all small cells to a desired volume tolerance, as single 
porosity matrix cells cannot be merged with dual porosity cells nor can neighboring flowing cells 
of different relative permeability regions be merged.  Numerical tests show that only a small 
amount of binning and a modest cutoff for implicitness can have a very favorable impact on 1D 
solver efficiency and overall solution times, without noticeable loss of detail on the full 3D 
solutions. 
 
We finish with a large 3D 280,000 gridblock model adapted from the SPE10[2] test case that 
contains both single porosity and dual porosity regions as well as multiple relative permeability 
regions.  Comparisons with a standard grid-based simulation showed that the streamline-based 
method, while properly modeling imbibition of water into the matrix, tended to also show more 
channeling along high permeability fracture regions giving earlier breakthrough times.  We 
attribute this to the reduced amount of smearing in the flood front observed with the streamline 
simulation as compared with the finite-difference simulation.  For this 280,000 cell model the 
streamline method was 9 times faster than the finite-difference simulation. 
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Introduction 
Streamline-based (SL) simulation is now an accepted technique for flow modeling that 
complements more standard finite-difference (FD) methods.  See Thiele[19] for a thorough 
overview of SL simulation.  Streamlines have been shown to work well on large heterogeneous 
full-field models where the primary recovery mechanism is fluid displacement via injectors 
and/or aquifer support[1][14][16].  Results show that for these types of models, SL simulation is one 
to two orders of magnitude faster than FD methods.  SL simulation additionally provides novel 
information such as flow visualization, well drainage regions, and well allocation factors—all 
useful in history matching and optimizing field performance.  However, SL theory had been 
confined to single porosity (SP) models thus limiting the technique to non-fractured reservoirs.  
Yet it is precisely field-scale fracture systems that require significant computer resources at 
realistic grid resolutions and where SL simulation would be an excellent complement to existing 
simulation approaches.  
 
Recently Di Donato et al.[2] extended the SL theory to fractured media using the dual porosity 
(DP) approach.  The details of streamline simulation and the extension to DP theory are not 
covered in this paper.  In brief, their method accounts for capillary-controlled imbibition via a 
transfer function between the matrix & fracture.  Because they assume incompressible flow, the 
pressure solve is only a function of the flowing medium properties of each gridblock and is 
unaffected by the transfer function.  A transfer function is included as a source/sink term along 
the one-dimensional conservation equation for each streamline as part of the solution of the mass 
transport problem.  Di Donato et al. implemented a linear transfer function, the Kazemi et al[11] 

transfer function, and the capillary pressure driven model found in conventional grid-based 
simulation methods.[8] Other dual porosity effects such as gravity-drainage or oil expansion in 
the matrix due to compressibility were not considered, nor are they addressed here. Al-Huthali 
and Datta-Gupta[6] have also presented a DP and dual permeability using streamlines where 
gravity-drainage effects were included in the transfer function.  The work of Di Donato et al. and 
Al-Huthali and Datta Gupta demonstrate that streamlines can be extended to dual porosity 
systems and can yield similar recovery behavior to grid-based methods[5,6].  However, because 
runtimes with conventional FD methods scale approximately quadratically with respect to the 
number of grid cells while the SL method scales approximately linearly, the SL method was 
shown to be one – two orders of magnitude faster than FD methods at appreciable grid 
resolution. For the largest models studied by Di Donato et al. (1.1 and 4.4 million cells), the dual 
porosity system was too big to be run in any reasonable time with a FD method on a high-end 
single CPU computer.  In these cases the SL method, although making some assumptions, was 
the only solution possible. 
 
Di Donato et al.’s work laid the foundation for SL simulation extended to DP systems.  The key 
idea in Di Donato et al. is that there is a flowing medium and a non-flowing medium.  A 
streamline always traverses the flowing medium, and interacts with the non-flowing medium 
through a transfer function.  Thus a SP-block can either be a “matrix” block or a “fracture” block 
and both are simply treated as a flowing medium along the streamline. Conversely, a DP-block 
will have a flowing medium (the fracture) represented along the streamline and a non-flowing 
medium (the matrix) coupled to the streamline via a transfer function. See Figure 1 for a graphic 
representation of this concept. 
 
The geological model studied by Di Donato et al. was restricted to a variation of the 10th SPE 
Comparative Solution Project on Upscaling.[2]  The DP variation of SPE10 was assumed to 
contain only dual porosity cells with constant matrix properties, constant fracture porosity φf, and 
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a heterogeneous fracture permeability (kf) field with a constant transfer function.  The intent of 
this paper is to extend Di Donato et al.’s work to more realistic geological systems that contain 
single and dual porosity cells, and heterogeneous porosity and permeabilities for both the matrix 
and the fractured regions.   As discussed in the next section, the extensions presented in this 
work are confined to (1) how the 1D streamlines are pre-processed before being passed to the 1D 
solver; and (2) to modifications in the 1D numerical solution itself.  All else is the same as 
outlined by Di Donato et al.[1-3].  We finish by providing DP streamline results on our own 
variation of SPE10 but with multiple relative permeability regions, SP/DP cells, and a varying 
matrix-fracture transfer functions multiplier, and compare the results with grid-based simulation 
using Eclipse.[17] 

 

Impact of Realistic Grids on 1D Streamline Discretization 
  
The key step in streamline simulation is the construction of a 1D problem that is solved 
numerically along each streamline.  As outlined in Thiele[10], the 1D equation to solve along each 
streamline is in the form 
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For incompressible flow the flux along each streamline, qsl , can be assumed to be a constant and 
we can relate time-of-flight (TOF), τ, to volume, rewriting the 1D equation as,[10] 

 

Equation 2: c
isli ni

V
Fq

t
M ,1,0 ==

∂
∂

+
∂
∂

, 

 
which is similar to the familiar 1D Buckley-Leverett equation.  Equation 2 states that once 
discretized, each streamline will be composed of discrete cells whose volumes vary.  This is due 
to the fact that the ∆τ a streamline encounters across each gridblock it traverses as it is traced 
from an injector to a producer varies due to clipping gridblock corners and velocities being very 
large near source/sinks and small away from source/sinks.  Even homogenous 3D systems can 
give rise to ∆V’s varying significantly along streamlines.  For realistic geological models with 
heterogeneous rock properties the variability in volumes along each streamline is amplified and 
for models containing areas of both SP and DP cells, and heterogeneous matrix and fracture 
properties, variability is amplified further.  
 
As illustrated in Figure 1, the SP/DP regions can give rise to both, very small volume and large 
volume cells, along the 1D streamline which leads to a highly irregular 1D profile.  Because very 
small cells with high throughputs can cause a 1D explicit solver to take very small time steps, 
small cells need to be removed—either through regularization as done by Di Donato et al., or 
through binning of smaller cells with larger cells.  Regularization and binning are possible when 
all cells are SP or DP and relative permeability regions are a constant, but for realistic grids with 
mixed SP/DP regions, a streamline will have both SP and DP cells, and relative permeability 
regions in the flowing medium that are not constant along the 1D path.  As discussed next, a 
combination of binning of small cells and an adaptive-implicit 1D solver are proposed in this 
paper to efficiently solve the highly irregular solutions along each streamline. 
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Binning the 1D Irregular Solution 
One method of eliminating very small volume cells that occur along a streamline’s 1D irregular 
cell profile is to bin (merge) small cells with a neighboring larger cell and repeat the process 
until a minimum merged cell volume tolerance is reached.  For almost all 3D models studied, the 
net effect of binning very small cells together creates less of a mixing artifact than that caused by 
multiple streamlines mixing within each gridblock at each 3D time step.  Yet the removal of 
these small cells can greatly improve the efficiency of the 1D transport solution along each 
streamline and speed-up the 1D solution with essentially no difference in the final 3D solution.  
But care must be exercised when setting a binning tolerance, because if the volume tolerance is 
set too large and too much binning occurs, this has the effect of possibly smearing or advancing 
injection fronts well ahead of their actual position. 
 

SP Gridblock 

 

streamlinematrix 

∆V 

SP Gridblock 

 

fracture 

DP Gridblock 

 

Qmf 
 

matrix 

fracture 

non-flowing medium 

flowing medium 

∆Vk-1 ∆Vk ∆Vk+1 

 
Figure 1: Conceptual drawing of gridblocks intersected by a streamline and the resulting 1D irregular 
solution. 
 
Models with multiple relative permeability regions introduce an additional complication when 
binning.  A binned cell can only be assigned a single set of relative permeabilities and residual 
saturations.  Additionally, the averaging of saturations for a merged cell can result in saturations 
that are below the residuals of one of the original cells.  Thus, it is preferable to not merge cells 
together that do not share the same relative permeability curves for either the flowing or non-
flowing medium.  This is why using an AIM solver is important, as some small cells cannot be 
merged without introducing non-physical flow effects. 
 
For binning we use the following rules, where cell k is identified as the current cell whose 
volume is less than some tolerance, the left adjacent cell is k-1, and the right adjacent cell is k+1: 
 

1. Cannot merge a SP matrix cell with a SP fracture cell.  This is because the fracture 
relative permeability curves are rarely if ever the same as matrix relative permeability 
curves. 

2. Cannot merge a SP matrix cell with a DP cell.  As in 1 above, the relative permeability 
curves between the two regions are not the same.  Secondly, the matrix-fracture transfer 
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function applied to the resulting merged cell is no longer defined as the matrix is the 
flowing medium in one cell, but the non-flowing medium in the adjacent cell. 

3. Can merge a SP fracture cell with a DP fracture cell.  While this may have the undesired 
affect of connecting a fracture with the fracture and matrix of a neighboring cell, it does 
allow for binning of small SP fracture cells bounded on either side by DP cells, which 
can give improvements in solver performance. 

4. When merging SP cells together, and cells k-1, k, & k+1 all share the same relative 
permeability regions, merge cell k with the smaller volume adjacent cell.  Otherwise, 
first attempt to merge with either the right or left cell that shares the same relative 
permeability region as cell k.  If neither neighbor shares the same relative permeability 
region, then merge with the neighbor with the smaller volume and assign the relative 
permeability region of the adjacent neighbor to the newly merged cell (retain the region 
of the larger volume cell).   

5. When merging DP cells together apply the method of item 4 above.  However, when 
merging the matrix portions of the DP cells together, retain the relative permeability 
region with the highest residual oil saturation. 

6. Fluid saturations for a merged cell are based on a volume weighting of the saturations of 
the irregular cells that define the merged cell. 

7. The constant coefficient of the transfer function for a merged cell is based on the non-
flowing pore volume weighted average of the irregular cells that define the merged cell. 

The Adaptive Implicit 1D Solver 
The literature on adaptive implicit methods (AIM) is well documented and the reader is referred 
to an extensive literature for details[7],[20].  The AIM 1D-solver used here is significantly 
simplified by assuming a) an incompressible system and no dispersion thus making the transport 
problem hyperbolic; b) the conservation equations are written in terms of total mass; c) single-
point upstream weighting is used for the discretization; and d) the problem is strictly 1D along 
streamlines and the upstream direction is always known.  
 
For any SP-cell k we can discretize Equation 2 using a single-point upstream weighting scheme 
and implicit mass fluxes as 
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where n+1 is the new time level and n is the current time level of the 1D equation, and 
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We can expand the downstream flux at the current iteration level (m+1) as, 
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which results in a n system of linear equations in terms of cc n× cki niM ,1,, =∆ .  Newton’s 
method[13] is then used to solve for the flux at the new time level.  Because of the hyperbolic 
nature of the conservation equations and the fact that the equations are solved in 1D, the solution 
progresses from upstream to downstream sequentially with the upstream flux always being 
known at the new time level.  If a block is tagged as explicit, then the flux of the cell is trivially 
calculated using .  If the cell is tagged as implicit then Newton’s method is used to solve for 

 simultaneously. 
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Matrix-Fracture Source Term 

In a DP-cell, the transport is assumed to occur in the fracture with a source term accounting for 
the transfer of oil/water between the matrix and the fracture.  Thus, the discretized conservation 
equation for the fracture block (subscript f) is re-written as 
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where as for the matrix block (subscript m) we have that that 
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Ideally, the matrix-fracture source term should be solved implicitly.  On the other hand, the 
different time scales between the flow in the fracture and the exchange of oil/water between 
matrix and fracture allow a looser coupling. We therefore use an operator splitting approach in 
that we first solve 
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either explicitly or implicitly for the intermediate fracture masses , then solve +n

kiM ,
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where the transfer function is now evaluated at the intermediate fracture masses .  The 
transfer function used in this work is driven by a capillary pressure difference between matrix 
and fracture of the form 
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where λ is the mobility of the oil/water (subscript o,w) in the fracture/matrix (subscript f,m) and 
is the capillary pressure in the fracture/matrix (subscript f,m). cP

Level of Implicitness & Time Step Selection Along Streamlines 

A number of methods have been proposed to decide if a cell is implicit or explicit[9],[15].  Here we 
use a very simple throughput tolerance defined by  
 
Equation 12:  TqVV sl

j
tol

aik ∆<∆
 
where  represents the total volume throughput for streamline j at the 3D global time step 

size ∆T,  is the pore volume of the cell, and the volume tolerance for the AIM—an 
input parameter.  Thus, if the pore volume is smaller than the volume throughput times a 
tolerance, the cell is flagged as being implicit.  This check is done only once per streamline per 
3D time step.  The time step size  used along a streamline to solve the transport problem over 
the 3D time step 

Tqsl
j ∆

kV∆ tol
aiV∆

t∆
T∆  (streamlines are updated every T∆ ) is simply the time step size dictated by 

the smallest explicit cell along the streamline. 
 

Practical Implementations in the AIM-Solver  

Compared to the explicit formulation, every implicit block requires a significant amount of extra 
work with the additional risk on non-convergence of Newton’s method.  This must be weighted 
against the potential of taking a much larger time step across a cell that might otherwise severely 
restrict the time step if treated explicitly.  A smooth implementation of the AIM solver must take 
care to balance these two criteria.  In this work, we have implemented the following practical 
features to ensure robustness and efficiency of the algorithm: 
 

1. The initial guess for the start of the Newton loop is an explicit step with a reduced time 
step size. 

2. The Jacobian is evaluated every third Newton iteration. 
3. A line search follows each Newton iteration to ensure global convergence and a steady 

reduction of the residual. 

1D DP Examples 
To test the AIM solver, we used four 50x1x1 DP systems in which the only difference was the 
block volume of the individual cells.  All systems had the same total pore volume. The first 
system used a uniform grid and the remaining 3 used randomly distributed grids with 
progressively increasing differences between the volume of the smallest and the largest cell.  
Statistics of the cells volumes are given in Table 1. 
 

 Uniform (U) Random1 (R1) Random2 (R2) Random3 (R3)
Average Volume 10 10 10 10 
Min Volume 10 0.64 0.0071 0.00037 
Max Volume 10 50.2 149.00 280.00 

 
Table 1: Pore volumes for the 4 test systems used. The histograms for R1, R2, and R3 are shown in 
Figure 2. 
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Figure 2: Histogram for the block pore volumes associated with the three random systems used for 
testing the AIM-solver. 
 
To see the impact on run times we used different throughput tolerances (V ) equal to 0.0, 
0.001, 0.01, and 0.1.  The number of explicit cells remaining after applying the volume 
tolerances are given in  

tol
ai

Table 2.  Run times in minutes associated with each 1D system are given in Table 3 below. 
 

Number of Explicit Cells as a Function of Throughput Tolerances 
tol

aiV  Uniform (U) Random (R1) Random (R2) Random (R3) 
0.000 50 50 50 50 
0.001 50 50 42 25 
0.01 50 43 18 11 
0.1 50 6 7 4 

 
Table 2: Number of explicit cells after applying the throughput tolerance V . tol

ai

 
 

Run Times as a Function of Throughput Tolerances (in min) 
tol

aiV  Uniform (U) Random (R1) Random (R2) Random (R3) 
0.000 0.06 0.22 15.42 ************* 
0.001 0.06 0.22 0.49 0.52 
0.01 0.06 0.07 0.12 0.11 
0.1 0.06 0.05 0.05 0.05 

 
Table 3: Run times of each system as a function of the throughput tolerance V . tol

ai

 
The importance of the results in Table 3 is best illustrated by R3 (V ), which cannot be 
solved without an AIM formulation.  Keeping all blocks explicit for R2 leads to an unacceptable 
run time of 15.42 minutes for this small 50x1x1 system, while even a small tolerance of 0.001 

0=tol
ai
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allows the systems to be solved more efficiently (a speed-up by a factor of 31 for R2—from 
15.42 mins to 0.49 mins).  At a tolerance of 0.1 there is little difference in run times between the 
various cases, and all examples have an equivalent water breakthrough profile as shown in 
Figure 3. 
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Figure 3: Water production profiles for all the runs of Table 2 & Table 3. 
 

A 3D DP Synthetic Example 
Here we will illustrate the effects of binning and the level of implicitness in the 1D solver on the 
overall solution time and production profile of a 3D system[18].  For comparison purposes we 
studied the 20x55x17 10th SPE Comparative Solution Project model used by Di Donato et al.  
Although this model does not have SP/DP regions, it is 3D, has a heterogeneous fracture 
permeability distribution, and a divergent/convergent flow field due to the source/sinks.  Thus 
this model does give variable volume cells along each streamline traced at each timestep, 
although the variability will not be as extreme as in a SP/DP system.  We choose this test model 
because there are no restrictions on binning cells due to varying DP/SP or relative permeability 
regions, which could obscure the effect of varying the binning tolerance, V .  Approximately 
2500 streamlines were tracer per timestep per model, and the ratio of largest to smallest cell 
volume for each streamline ranged from approximately 1 to 7 orders of magnitude. 

tol
bin

 
To illustrate the sensitivity to the binning volume tolerance, we forced the 1D solver to remain 
explicit (V ), and varied V from 1x10-4 to 0.1.  To illustrate the sensitivity on level of 
implicitness, we fixed V 1x10-4, and varied V from 0 to 0.10. Field water production 
profiles are shown in Figure 4, and timing results, using a P4-2.2Ghz PC, are shown in Figure 5.   

0=tol
ai

tol
bin

=tol
bin

tol
ai

 
Figure 4 shows that binning irregular cells can affect the breakthrough profile as the tolerance is 
increased beyond a certain threshold.  In Figure 4, this happens as the tolerance changes from 
0.01 to 0.1 and is expected—binning very small cells will do little to smear the waterfront along 
each streamline but binning larger cells will.  Thus excessive binning will cause mixing and 
smearing that can change the production profile.  The smearing effect due to binning might still 
be small however compared to mixing that occurs at the 3D level between streamlines for each 
global timestep when all streamline saturations are mapped back to the 3D grid.  Also note that 
while the binning tolerance has little impact on the solution as it is varied from 1x10-4 to 0.1, it 
has a large impact on run times as shown in Figure 5.  Run times were reduced from about 95 
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minutes to 5 minutes (19x faster) just by removing cells smaller than 0.01 of the total streamline 
volume. 
 
Figure 4 shows that the overall field breakthrough profile is fairly insensitive to the tolerance 
used to toggle cells from explicit to implicit.  This is expected for two reasons: (1) the 1D results 
in Figure 3 showed little difference in production profiles, as the level of implicitness was 
varied; and (2) the slight increase in numerical diffusion in the 1D solver due to more cells 
handled implicitly is masked by the mixing effect between streamlines at the 3D level that occurs 
at each global timestep.  Figure 5 shows that if very small cells are not binned and allowed to 
pass to the 1D solver then the AIM tolerance can have a great impact on run time.  At a 
fixedV 1x10-4 CPU time was reduced from about 95 minutes to 9 minutes (10.5x faster) as 

changed from 0 to 0.10.  Similar dependence on V was seen in the previous section also.  
For V > 0.01 on the other hand, the level of adaptive implicitness had almost no effect on run 
time because small cells are already removed by the binning algorithm and few cells are treated 
implicitly.  

=tol
bin

tol
bin

tol
aiV tol

ai

 
One might conclude from this example that binning alone is enough to improve runtime without 
affecting results and that an AIM solver is not necessarily needed.  Recall that this model does 
not contain SP/DP regions or varying relative permeability regions, so there are no cells ever 
encountered that cannot be binned to meet a desired tolerance.  For grids with SP/DP regions, it 
is quite possible that very small cells cannot be binned with a neighboring cell and thus need to 
be passed to the 1D solver as is.  Because any one very small cell when compared to throughput 
can force the 1D solver to take very small time steps and thereby slow the entire simulation—in 
certain cases radically—it is important to handle these cells via the AIM method. 

 
Figure 4: 3DSL field water production rate sensitivity to binning tolerance and adaptive implicit 
tolerance. 
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Figure 5: CPU time sensitivity to binning tolerance and adaptive implicit tolerance. 

A 3D SP/DP Example 
We conclude with an example containing more realistic geology, constructed by modifying the 
SPE10 data set.  This example is based on a 60x220x17 grid with a permeability field upscaled 
from the original 60x220x85 model.  The upscaled permeabilities were used to construct both a 
matrix and fracture permeability field, and multiple relative permeability regions (Figure 6).  
Specifically, the matrix permeability field was computed as being 1/10th of the upscaled 
permeabilities and the fracture permeability field was 10 times the upscaled permeabilities. 
Matrix was assumed to be present throughout the entire model but in areas where the upscaled 
permeability was <10 mD, fractures were assumed to not be present (SP gridblocks).  In total 
there were 126,000 DP gridblocks and 98,000 SP gridblocks.  Relative permeability regions 
were created as follows: the fracture system represented one rock region (straight line fractional 
flows), matrix blocks in the DP region were divided into 3 regions based on permeability cutoffs, 
and SP gridblocks were given their own relative permeability curves. 
 

   
 
Figure 6: Left image is SP/DP mask for layer 13.  Orange indicates matrix only gridblocks while blue 
indicates matrix/fracture gridblocks.  Right image shows relative permeability regions for layer 13. 
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As the streamline method does not include capillary pressure in the flowing medium transport 
equations, care was taken to remove capillary pressure from the fracture and the SP matrix 
relative permeability curves for validation with ECLIPSE.  As in the original SPE10 problem, an 
injector was located in the center of the model, while a producer was located at each corner.  
Where a well’s path intersected DP gridblocks it was completed in the fracture medium of a DP 
gridblock, otherwise it was completed in the matrix of SP gridblocks.  Producers were on total 
liquid rate control with rates set such that producers in higher permeability regions had a higher 
liquid rate compared with those in lower permeability regions.  The injector was on pressure 
control.  The volume replacement ratio (VRR) was exactly one. 
 
Figure 7 is a comparison of oil rates for each producer for the streamline method and Eclipse.  
Although the oil production trends between 3DSL and Eclipse are similar for producer 4, 3DSL 
predicts earlier water breakthrough.  We tested different timestep sizes and volume cutoff 
tolerances yet 3DSL results were unchanged still showing earlier water breakthrough.  As shown 
in Figure 8, water breakthrough is earlier because 3DSL shows a sharper thinner water front in 
the fracture system than Eclipse does for the layer where breakthrough to producer 4 first occurs. 
This is typical of highly heterogeneous models where streamlines do a better job of capturing 
high permeability streaks than FD methods do.  The remaining well profiles agree better because 
there are less continuous streaky high perm zones between the injector and these wells. 
 

 
 

Figure 7: Comparison of oil rate between 3DSL and Eclipse (E100) for each producer for the 60x220x17 
SP/DP model. 
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Both simulation models were 
run to 3500 days, with the 
streamline solution requiring 
about 28 timesteps (243 min on 
a P4-2.2Ghz Windows PC) and 
Eclipse requiring about 670 
timesteps (1415 min on a Xeon-
2.8Ghz Windows PC).  
Although 3DSL maintains near 
linear scaling of runtime with 
model size for both SP and DP 
systems, this speedup factor is 
not nearly as high as that quoted 
by DiDonato et al. for a similar 
sized DP model.  The difference 
in speedup factors between our 
results and DiDonato et al.’s is 
likely due to the necessary 
overhead required of a 
commercial code for 
widespread applications versus 
more specialized research code, 
but also possibly due to the 
regular discretization along 
streamlines in DiDonato et al. 
work vs. the irregular 
discretization used here here. 
 
 
 
 
 
 

Figure 8: Water saturation for layer 13 in both the fracture and matrix prior to breakthrough at producer 
4 (lower right corner). 

Conclusions & Discussion 
The dual porosity formulation as outlined by DiDonato et al. for streamline-base flow simulation 
has been extended to more realistic geological models containing both single and dual porosity 
regions and multiple relative permeability regions.  Mixed SP/DP grids give rise to a very large 
distribution in cell volumes along a 1D profile for each streamline with relatively small cells 
potentially forcing a 1D explicit solver into unrealistically small time steps.  To solve this 
problem, we propose to merge small volume cells with their neighbors as one way to eliminate 
the small cells from a streamline’s 1D profile.  However, because not all small cells can be 
merged with their neighbors—for example, SP cells cannot be merged with DP cells—the 1D 
solver method was modified to be adaptive implicit so that any remaining small cells that fall 
below a set threshold are treated implicitly.  Results showed that binning and implicitness have a 
large and favorable impact on runtimes with little adverse affect on solution profiles. 
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We concluded with results for a large 280,000 cell model that contained both SP & DP cells as 
well as multiple relative permeability regions.  Streamline results compared well with the grid-
based method, but showed more channeling and slightly earlier breakthrough in high 
permeability zones, most likely due to reduced numerical smearing of the displacement front.  
Speed-up factors were not as high as those quoted by DiDonato et al., primarily due to the 
increased overhead in the commercial streamline simulator versus DiDonato’s research code and 
regular vs. irregular discretization along streamlines. 
 
While the final test case was realistic in terms of grid size and properties, the primary extension 
to this work would be applying the streamline method to a typical dual porosity field case.  
These cases typically have a couple of hundred wells with years of history, yet only a couple of 
100,000 cells meaning only a few grid cells between wells.  Increasing the number of cells 
between wells should significantly improve the predictive power of such models, despite some 
of the simplifying assumptions introduced into the streamline DP-approach.  Streamline-based 
results of such systems on conventional PC’s would therefore be expected to be of substantial aid 
reservoir engineers attempting to understand the dynamic behavior of fractured reservoirs 
undergoing water injection. 
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