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Abstract

Streamtubes are used to determine fast and accurate solutions to multiphase, multi-

component displacements through heterogeneous, cross-sectional systems. Solutions

are constructed by treating each streamtube as a one-dimensional system along which

mass conservations equations are solved, either analytically or numerically. The non-

linearity of the underlying 
ow �eld is resolved by periodically updating the stream-

tubes and remapping the one-dimensional solution(s) as an integration from tD = 0

to tD = tD + �tD. Examples for (1) tracer 
ow, (2) two-phase immiscible 
ow, (3)

�rst contact miscible 
ow, and (4) two-phase, compositional 
ow demonstrate that

recoveries and large-scale displacements characteristics dictated by reservoir hetero-

geneity can be predicted accurately using two to �ve orders of magnitude less com-

putation time than traditional simulation approaches. Mapping analytical solutions

along streamtubes allows di�usion-free, two-dimensional solutions to be found. By

comparing streamtube solutions to traditional �nite di�erence solutions, numerical

di�usion is shown to reduce substantially and in some cases even to eliminate com-

pletely the mobility contrast in compositional displacements. The coupling of phase

behavior and numerical di�usion is found to be so dominant as to force only very

slow convergence of the solution by progressive grid re�nement. The speed of the

streamtube method is used to quantify the uncertainty in recovery arising from the

statistical description of reservoir heterogeneity interacting with the inherent nonlin-

earity of the problem formulation. The uncertainty is shown to be signi�cant and

characterized by a large spread in overall recovery.
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Chapter 1

Introduction

This chapter presents the main objective of the streamtube approach and the mo-

tivations that led to this research. The principal idea of using streamtubes as one-

dimensional systems, the Riemann approach for mapping solutions along streamtubes,

and the issue of nonlinearity in the problem formulation are brie
y reviewed. The

class of problems for which the streamtube technique is applicable and its limitations

are discussed, and a brief overview of each chapter is given.

The primary objective of the streamtube approach is to enable fast and accurate

numerical solutions to displacements through strongly heterogeneous systems while

retaining the details of the underlying physical models seen in one-dimensional solu-

tions. The fundamental assumption in using the streamtube approach rests on the

belief that �eld scale displacements are dominated by reservoir heterogeneity: by cap-

turing 
ow paths and their relative importance as one-dimensional transport conduits

between wells while honoring the physical displacement mechanism along these con-

duits allows di�cult enhanced oil recovery displacements to be modeled successfully.

Fast and slow 
ow regions in the reservoir can be represented using quasi one-

dimensional streamtubes. Streamtubes can be visualized as an array of pipes, having

variable geometries and connecting the injector and producer wells. The shape of

each pipe (streamtube) is dictated by the reservoir geology and, most importantly,

each pipe is assumed to conserve mass: what goes in a pipe must come out.

1



chapter 1 introduction 2

The motivation for this research originated from recent advances in the one-

dimensional theory of multicomponent, two-phase, compositional displacements (Johns

et al. 1992, Dindoruk et al. 1992, Orr et al. 1991) and a desire to extend the so-

phisticated physical models to two-dimensional heterogeneous systems. Traditional

numerical solutions to two- and three-dimensional compositional problems are pro-

hibitively expensive, while returning less than satisfactory solutions due to substantial

numerical errors. Motivation for a fast numerical technique was also sparked by the

now established statistical methods used in reservoir description. Many equiprobable

realizations of a particular reservoir, conditioned possibly on log data, core analy-

sis, and seismic data, allow probabilities to be attached to cumulative oil recoveries.

Yet processing the hundreds of geostatistical realizations using traditional reservoir

simulation techniques remains numerically expensive, if not impossible.

1.1 Streamtubes and The Riemann Approach

The method used for modeling the four di�erent displacement mechanisms discussed

in this dissertation | (1) tracer 
ow, (2) two-phase immiscible 
ow, (3) �rst contact

miscible 
ow1, and (4) compositional 
ow | centers on the idea of a streamtube as

a quasi one-dimensional object. Two-dimensional solutions are then constructed by

mapping one-dimensional solutions to the appropriate mass conservation equations

along each streamtube. Because the streamtubes are treated as one-dimensional ob-

jects, the conservation equations are solved using Riemann boundary conditions (for

which analytical solutions can be found) and mapped along streamtubes as Riemann

solutions. For any new time step, the solution along a streamtube is always found

by integrating from 0 to tD + �tD rather than from tD to tD + �tD. Mapping the

one-dimensional solution in this manner along the streamtubes is referred to as the

`Riemann approach' throughout the text. The Riemann approach is introduced to

circumvent the di�culties associated with general type initial conditions that arise

along periodically updated streamtubes.

1Sometimes also referred to as ideal miscible 
ow.
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1.2 Nonlinearity

The fundamental di�culty in solving the partial di�erential equations (PDE's) gov-

erning the 
ow through porous media is their nonlinear formulation. In other words,

in order to account for the relevant physics of 
uid 
ow, the coe�cients that appear

in the governing equations (relative permeabilities, viscosities, densities, etc...) be-

come functions of the independent variables of the problem, usually phase saturations

and/or overall compositions. A special case occurs when the coe�cients are assumed

constant with respect to the independent variables2, as is done in unit mobility ratio

(M=1) 
ow. In that case the streamtubes are �xed with time and the 
ow is said to

be linear.

To account for the inherent nonlinearity of all other displacements, the stream-

tube approach periodically updates the streamtubes (i.e. solves the elliptic PDE for

the streamfunction) and maps the one-dimensional solution to the particular trans-

port problem onto the new streamtubes using the Riemann approach. Thus, the

term `nonlinearity' is used in this dissertation to describe the changing velocity �eld

with time, as re
ected by the dependence of the total mobility on saturation and/or

compositions in the elliptic PDE for the streamfunction.

1.3 Class of Problems

The streamtube approach is meant to solve problems that are dominated by reservoir

heterogeneity and convective forces. Only cross-sectional problems are discussed here,

although there are no dimensional limitations and the method can be used in areal,

multiwell con�gurations as well as in three dimensions3. Solutions by the stream-

tube approach discussed in this dissertation are restricted to problems with constant

initial and injected conditions (Riemann boundary conditions) and no gravity-driven

2Although the coe�cients (like permeability) may still vary spatially.
3Although not as easily derived as in two-dimensions, three dimensional streamtubes arise by con-

sidering the intersection of stream surfaces (Bear 1972, p.226). Once a three-dimensional streamtube
is de�ned, all the arguments with regard to mapping one-dimensional solutions along a streamtube
in two dimensions can be applied directly to a streamtube in three dimensions.
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ow. Finally, the one-dimensional nature of the streamtubes requires transverse 
ow

mechanisms (normal to the streamtube boundaries) to be of negligible importance.

1.4 Outline

Chapter 2 outlines the relevant literature on streamlines and streamtubes. The pri-

mary emphasis is on the petroleum literature, which has seen repeated applications

of streamline and streamtube methods, beginning with Muskat and Wycko� (1934)

who were among the �rst to use streamlines to study how well patterns would af-

fect oil recovery. The groundwater literature is brie
y reviewed as well, although

a comprehensive coverage is traded for key publications that may serve as anchor

points to the vast body of literature dealing with the subject. The boundary element

method is reviewed as an alternative and e�cient method to generate streamlines,

and front tracking is presented as a related method to the streamtube approach in

moving discontinuous solutions along streamlines.

Chapter 3 introduces the mathematical model for simulating 
uid 
ow through

porous media using streamtubes. The governing PDE for the streamfunction in het-

erogeneous media is discussed, and the resulting streamtubes are presented as pseudo

one-dimensional systems. The key issue of mapping one-dimensional solutions along

streamtubes is discussed.

Chapter 4 applies the streamtube approach to unit mobility (tracer) displace-

ments. A piston-like, one-dimensional solution is mapped along streamtubes to give a

numerical-di�usion-free, two-dimensional solution for a heterogeneous domain. Phys-

ical longitudinal di�usion is added to the solution by mapping the convection-di�usion

equation along streamtubes. The error caused by numerical di�usion in traditional

�nite di�erence approaches is quanti�ed using the di�usion-free streamtube solution

as reference solution.

Chapter 5 solves the two-phase immiscible problem by mapping the well-known

Buckley-Leverett solution along streamtubes. The issue of the inherent nonlinearity

in the velocity �eld is solved by periodically updating the streamtubes and remapping

the Buckley-Leverett solution using the Riemann approach. The Riemann approach
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is validated and shown to introduce smaller errors than numerical di�usion in tradi-

tional �nite di�erence simulators. It is also compared to the Higgins and Leighton

method in which the streamtubes are �xed throughout the displacement and rates

are allocated according to the total 
ow resistance of each streamtube. The key result

of this chapter is the demonstration that two-phase immiscible displacements can be

successfully modeled using two-orders of magnitude fewer matrix inversions than tra-

ditional �nite di�erence simulators. The superior speed is then put to use to assess

the interaction of nonlinearity and reservoir heterogeneity in de�ning the uncertainty

in cumulative recovery.

Chapter 6 looks at solving �rst contact miscible displacements (FCM) by mapping

three possible one-dimensional solutions along streamtubes: (1) a piston-like solution,

(2) a convection-di�usion solution, and (3) a viscous �ngering solution. The important

issue of scale is discussed given that viscous �ngering cannot be represented explic-

itly and is captured at the sub-streamtube scale by using a Todd{Longsta� model.

Streamtubes are assumed to be on a �eld scale, attaining a Fickian limit within each

streamtube for M = 1 
ow while giving rise to viscous �ngering for M > 1. The

streamtube approach is shown to match overall recoveries obtained using Mistress, a

�nite di�erence code with a 
ux-corrected-transport formulation (Christie and Bond

1985), with a speed-up by two to three orders of magnitude. Ninety geostatistical real-

izations with di�erent heterogeneity indices (HI = 0:077; 0:18; 0:86 |30 realizations

per HI) are used in 180 displacements (M = 5 and M = 10) to demonstrate that

increasing heterogeneity and increasing nonlinearity combine to increase substantially

the uncertainty in recovery.

Chapter 7 applies the streamtube approach to compositional displacements through

heterogeneous systems. One-dimensional as well as two-dimensional reference solu-

tions are found numerically using a �nite di�erence compositional simulator (UT-

COMP ). By comparing the di�usion-free streamtube solutions to the UTCOMP solu-

tions, numerical di�usion is shown to reduce substantially the original instability of

the displacement. Streamtube solutions are made to match the UTCOMP solutions

by completely eliminating the mobility contrast, i.e. setting M = 1. The result-

ing speed-up is by four to �ve orders of magnitude. Cross
ow is not found to be a
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dominant factor in mitigating the displacements for the heterogeneous systems inves-

tigated here, and the e�ect of cross
ow is argued to be on the order of transverse

di�usion.

Finally, Chapter 8 gives a brief summary of the dissertation, points out the limita-

tions of the streamtube approach, and identi�es the main conclusions of this research.



Chapter 2

Literature Review

This chapter reviews the relevant literature on streamlines and streamtubes, with

particular emphasis on the petroleum literature. Brief reviews of the groundwater

literature, the boundary element method (an alternative approach for generating

streamlines), and the front-tracking method are presented as well.

2.1 Introduction

Streamlines and streamtubes are well established in computational 
uid dynamics

and have given rise to a very large body of literature. This chapter reviews ideas

and concepts in the published literature involving streamlines/streamtubes which are

directly related to modeling of subsurface 
uid 
ow.

Unfortunately, the groundwater and petroleum literatures have evolved quite inde-

pendently from each other and little cross referencing has taken place on the general

subject of streamlines and streamtubes. In part, this is due to the di�erence in

the fundamental problem the two �elds are concerned with: regional, single-phase


ow with emphasis on aquatic chemistry in groundwater mechanics versus con�ned,

multiphase, multicomponent 
ow in petroleum engineering. This chapter is biased

towards the petroleum literature, although it is fair to say that the concepts of

streamlines/streamtubes are probably better established in the groundwater liter-

ature. Textbooks on groundwater 
ow (e.g. Bear 1972, Strack 1989) usually include

a discussion on streamlines and streamtubes as a modeling technique, whereas it is

7
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rare to �nd these ideas discussed in petroleum engineering text books1.

Two main issues arise in modeling multiphase displacements in porous media

streamtubes: (1) generating streamlines/streamtubes for a particular geometry and

reservoir heterogeneity and (2) accounting for the inherent nonlinearity in the 
ow

�eld. Streamtubes are generally found by solving for the pressure �eld and then

tracing streamlines using the derived velocity �eld. An alternative is given by the

boundary element method (BEM), which has a high degree of accuracy and leads

to a smaller system of algebraic equations, although it has di�culties in handling

heterogeneous domains. The nonlinearity in the velocity �eld is usually accounted

for by �xing the streamtubes in time (i.e. solving the velocity �eld only once) and

then modifying the 
ow rate associated with each streamtube according to the total

resistance of the system as a function of time. A more rigorous, but somewhat involved

approach, is the front-tracking method; the velocity �eld is recalculated periodically

and the saturation/concentration fronts are moved according to their characteristic

velocities.

In reviewing the relevant literature, a chronological order is used to highlight

original contributions by the authors as well as to maintain the natural succession

of ideas. Brief summaries of some of the papers discussed here can be found in

Appendix B.

2.2 Petroleum Literature

As with many subjects in reservoir engineering, Muskat was one of the �rst to apply

streamlines to study how well patterns would a�ect recovery (Muskat and Wycko�,

1934). Using electrical conduction models, Muskat and Wycko� compare the recovery

e�ciency of a staggered line drive, a direct line drive, a �ve-spot pattern, and a seven-

spot pattern, �nding the staggered line drive as having `the most favorable physical

features'. They discuss their results in terms of two-phase 
ow, although tracer-
ow

assumptions are used for all calculations. Thus, the streamlines are assumed �xed in

time. An interesting note is that Muskat and Wycko� conclude their discussion by

1An exception is the book by Muskat (1937): The Flow of Homogeneous Fluids.
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suggesting that, all things considered, well spacing and arrangement may be of minor

importance compared to the channeling caused by `high permeability zones within

the main body of sand', an idea that is clearly in line with current beliefs on the

importance of reservoir heterogeneity in determining recovery.

Muskat devotes an entire chapter in his famous textbook, Flow of Homogeneous

Fluids (Muskat 1937), to two-dimensional problems that can be analyzed using po-

tential-theory methods. These methods rely on the analogy between the equations

describing steady state current 
ow in an electrolytic medium and the equations de-

scribing steady-state 
uid 
ow in porous media and are used to capture the stream-

lines resulting from the geometrical constraints imposed by the boundaries and wells

(Lee 1948). Muskat (Muskat 1948) extends the potentiometric approach to account

for reservoir heterogeneity by demonstrating that varying the electrolyte layer thick-

ness is equivalent to specifying a spatial kh distribution.

Higgins and Leighton are credited with being the �rst to apply the streamtube

technique to model nonlinear displacements in homogeneous, areal domains for sev-

eral regular well patterns. Their work is discussed in three publications: Higgins and

Leighton (1962a) discusses two-phase 
ow, Higgins and Leighton (1962b) considers

three-phase 
ow, and Higgins et al. (1964) studies the in
uence of several di�erent

well patterns. In their �rst paper, Higgins and Leighton consider a homogeneous

quarter �ve-spot pattern in which ten streamtubes are divided into `sand elements' of

equal volume. By determining the average mobility (actually referred to as average

permeability in the paper) and a `geometric shape factor' for each sand element at the

end of each time step, Higgins and Leighton �nd the total resistance of each stream-

tube (`channel'). The amount of 
uid injected into each streamtube is then allocated

proportionally to the ratio of the resistance of each streamtube to the total resistance

of the system. Although the streamtubes are �xed throughout the displacement,

Higgins and Leighton show excellent agreement with laboratory water
ood data re-

ported by Douglas et al. (1959) for end-point viscosity ratios ranging from 0.083 to

754. It is important to note however, that in all cases the relative permeability curves

(`permeability-saturation curves') used by Higgins and Leighton in their simulations

give rise to rarefaction waves only. In other words, although the end-point mobility
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ratio is very high, the instability is mitigated across a very long rarefaction wave. Hig-

gins and Leighton (9/1962b) then extend their approach to three-phase 
ow by using

the water-oil fractional 
ow to �nd the two-phase mixed-wave solution and assuming

that the gas has in�nite mobility such that it will always travel ahead of the water-oil

region. Although the one-dimensional three-phase 
ow assumptions are questionable,

Higgins and Leighton show a good match with a layered system. Finally, Higgins et

al. (1964) extend the Higgins and Leighton method to several production patterns,

including a seven-spot, a direct line-drive, and a staggered line-drive and provide the

reader with a table of shape factors for the various cases.

Hauber (1964) derives analytical expressions for calculating injectivity, time, and

cumulative water injected when the water-oil interface has moved a given distance

along a streamtube and introduces a distortion factor for non-unit mobility ratio dis-

placements to account for changing streamtube geometries as the 
ood progresses.

Hauber applies his method to a �ve spot and direct line drive. He then compares

his results to experimental data obtained from an electrolytic model and X-ray shad-

owgraph model, as well as a moving interface algorithm proposed by Sheldon and

Dougherty (1964). Reasonable agreement with experimental data and the moving

interface algorithm is shown.

An important extension to the Higgins and Leighton method is presented byDoyle

and Wurl (1971). Doyle and Wurl apply the streamtube approach to �elds that have

asymmetrical well patterns and irregular boundaries. They use superposition to �nd

the streamlines and proceed to �nd the geometrical shape factors for each streamtube

allowing them to apply the Higgins and Leighton method. Unfortunately, Doyle and

Wurl never actually discuss the algorithm they use to introduce the �eld boundaries

in their streamline generation. The contribution by Doyle and Wurl is to extend

the streamtube method to real �eld geometries and to set the stage for a number of

papers to follow by other authors, which use streamtubes to model real �eld cases.

LeBlanc and Caudle (1971) also use superposition of line sources and sinks to

generate streamlines for a homogeneous domain, but do away with the geometrical

shape factors necessary in the Higgins and Leighton method by noting that the total


uid velocity along the dividing streamline is known if each streamtube is assumed
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to carry the same injection rate. Instead of using a geometrical approach, LeBlanc

and Caudle integrate along each streamline to capture the variation in total velocity.

Parsons (1972) was the �rst to consider permeability anisotropy. He shows how


ow patterns can be substantially altered leading to much lower recoveries than in the

isotropic cases. It is interesting to note that Parsons uses a time-of-
ight coordinate

along streamlines, thereby de�ning a 
ood front as points having an equal time-of-


ight value. In fact, a similar variable was used by Muskat (Muskat 1948) to de�ne

`constant time surfaces'.

An important note was published by Martin et al. (1973) on why the streamtube

method successfully models unfavorable mobility ratios, but fails for favorable mobil-

ity ratios. In particular, they show an interesting comparison of recovery curves for a

�ve spot, obtained by using streamtubes and a moving interface algorithm (Sheldon

and Dougherty 1964, Dougherty and Sheldon 1964, Morel-Seytoux 1965) for mobility

ratios of 0.1, 1, 10, and 100. A considerable di�erence in the recovery curves occurs

for M = 0:1. Martin et al. argue that for favorable mobility ratios the streamtube

approach underestimates recovery due to the fact that the streamlines in the watered-

out region are almost independent of the high-mobility region ahead of the water bank

and show that a better solution is obtained by updating the tubes several times as the


ood progresses. A interesting plot is presented which compares the tracer stream-

lines to streamlines updated at some later time. Using a `revised streamtube model'

Martin et al. recalculate the streamtubes, locate the old saturations onto the new

streamtubes, and continue the displacement calculations. Unfortunately, they never

discuss how the old saturation points are advanced along the new streamtubes. This

is an important, because the old saturation points along a new streamtube will give

rise to nonuniform initial conditions, for which there is no analytical solution. It is

probable that a moving interface algorithm was used for each streamtube.

A more extensive investigation of the error caused by the �xed streamtube assump-

tion is given by Martin and Wegner (1979). By considering mobility ratios ranging

from 0:1 to 1000, they conclude that the �xed streamtube approach is satisfactory for

most two-phase problems. As in the note byMartin et al. (1973), Martin and Wegner

show that the largest error occurs for favorable mobility ratios. It is important to
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mention that in all unfavorable mobility ratio cases, the relative permeability curves

used by Martin and Wegner give rise to rarefaction waves only (as in the case for Hig-

gins and Leighton), which also explains why their M = 1000 comparison on p. 314

shows such good agreement. Martin and Wegner also mention how the problem of

numerical di�usion is overcome by using streamtubes, but do not attempt to quantify

this advantage.

An interesting application of streamtubes to modeling in-situ uranium leaching is

presented byBommer and Schechter (1979). For this particular case, the unit mobility

displacement involved justi�es the constant streamtube assumption. The original

contribution by Bommer and Schechter is to solve the conservation equations using

a one-dimensional �nite di�erence formulation along each streamtube. Using this

approach, they are able to account for chemical reactions and physical di�usion in the

main direction of 
ow, thereby modeling the relevant physics of the leaching process.

The streamlines are found analytically using superposition, with the no-
ow �eld

boundary de�ned by image wells placed accordingly. A very similar application for

a micellar/polymer 
ood is presented by Wang et al. (1981). A streamline generator

sets up the 
ow �eld and then the concentration balance is solved by �nite di�erence

along each �xed streamline.

An important step forward in the attempt to include heterogeneity in the displace-

ment calculations is due to Lake et al. (1981). Using physical data from laboratory

experiments along with a layered geological model, Lake et al. generate a detailed,

vertical cross-sectional �nite di�erence solution for a polymer 
ood, which is then col-

lapsed into an average one-dimensional solution and mapped onto areal streamtubes

to obtain a three-dimensional �eld response. The importance of this paper lies in

the novel idea of introducing the interaction of heterogeneity with the physics of the

surfactant/polymer displacement by decoupling the vertical response from the areal

one. The main assumption in the method proposed by Lake et al. is that the areal


ow �eld is primarily in
uenced by well placement, whereas the vertical response is

a strong function of geology and type of displacement. Lake et al. assume constant

streamtube injectivities in their calculations.

Abbaszadeh-Dehghani (1982) applies the streamtube approach to solve the inverse
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problem. From breakthrough curves of tracer slug injections, Abbaszadeh-Dehghani

is able to reconstruct layered kh models that will honor the �eld data. He maps a

convection-di�usion solution onto the pattern of streamtubes and uses a nonlinear

optimization technique to converge onto the best layered model.

Emanuel et al. (1989) apply the powerful, hybrid streamtube technique proposed

by Lake et al. (1981) to determine the �eld performance of three CO2 
oods and one

mature water
ood. The cross-sectional response function is found by detailed �nite-

di�erence simulation using a fractal description of the porosity/permeability distri-

bution and core
ood data. In determining the areal solution, Emanuel et al. account

for nonunit mobility ratios, permeability/thickness values, and no-
ow boundaries.

For all cases, Emanuel et al. show excellent agreement with total �eld response data.

Other examples of the hybrid streamtube technique are given by Mathews et al.

(1989) (miscible-hydrocarbon WAG 
ood) and Tang et al. (1989) (a water
ood and

a CO2 
ood). The examples by Tang et al. are particularly interesting because in

determining the average cross-sectional response function, they varied the width of

the cross-section in the �nite di�erence simulation in order to capture the transition

from radial 
ow near the wells to linear 
ow away from the wells, thus including

gravity e�ects. Furthermore, Tang et al. generate ten di�erent fractional 
ow curves

to account for varying CO2 slug sizes, which results from updating the 
ow rates for

each streamtube as the 
ood progresses.

Motivated by the success of the hybrid streamtube approach, Hewett and Behrens

(1991) give a detailed discussion on scaling properties of hyperbolic conservation

problems and on determining average response functions (pseudofunctions) for het-

erogeneous cross sections. In particular, Hewett and Behrens show that for single

slug injections the solution is scalable by xD=tDs and tD=tDs, where tDs is the di-

mensionless slug volume. Since the hybrid streamtube method requires an averaged

cross-sectional response, Hewett and Behrens study the in
uence of heterogeneity on

the scaling properties of a pseudo one-dimensional solution. They conclude that, in

general, heterogeneity does not allow a two-dimensional solution to be collapsed into

a one-dimensional solution that can be scaled by xD=tD, although in some special

cases the permeability correlation length may be used as an additional parameter to
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give reasonably scaled solutions.

Renard (1990) departs from the assumption of constant streamtubes and allo-

cation of rates according to total resistance. Instead, he periodically updates the

streamtubes and maps the old saturations/concentrations onto the new streamtubes.

Renard presents a micellar/polymer example in which he compares �eld data with

�xed and updated streamtube solutions. The solution with updated streamtubes is

closer to the �eld data than the one using �xed streamtubes. Unfortunataly Renard

does not indicate how he actually moves the old saturations/concentrations along the

new streamtubes.

King et al. (1993) present a modi�ed streamline approach as a rapid technique

to evaluate the impact of heterogeneity on miscible displacements. A time-of-
ight

coordinate is used to map the Todd{Longsta� model along each streamline, much

in the same way as Parsons (1972) does to locate the position of a tracer front. To

account for unfavorable mobility ratios, King et al. use a `boost' factor by integrating

Darcy's law along each streamline up to the isobar coinciding with the fastest �nger,

a slightly di�erent approach than that used by previous authors, who integrate over

the entire streamline.

2.3 Groundwater Literature

It is fair to say that the concepts of streamlines and streamtubes for modeling subsur-

face 
uid 
ow are well established in the groundwater literature. A testimony to this

fact is the considerable number of publications that deal directly or indirectly with

the streamfunction as well as the many textbooks that give a complete presentation of

the method (Bear 1972, Strack 1989). It would therefore be di�cult to give a formal

review of the subject without the danger of not citing many important contributions.

This section is principally an acknowledgment of the vast body of literature dealing

with streamlines and streamtubes in the groundwater literature. Its purpose is to

identify some key publications that will serve as a reference for a more comprehensive

coverage.

Streamlines and streamtubes are particularly suitable as a modeling technique for
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groundwater 
ow given the steady state nature of many problems of concern to the

hydrogeologists. For example, the transport of contaminants by a regional 
ow �eld

is a steady-state problem that is probably best captured by a streamtube approach

as demonstrated by Nelson (1978) and Frind et al. (1985). A nice review of the

theory related to the streamtube approach is presented by Frind and Matanga (1985).

Frind et al. (1988) use the streamtube approach (`dual potential-streamfunction

formulation') to capture dispersive processes at di�erent scales that can in
uence

the evolution of a plume as it migrates downstream in heterogeneous media. Local

scale di�usive processes are captured by using a local Peclet number in the convection-

di�usion equation, while larger-scale di�usion is represented through the resolution of

the 
ow �eld (streamtubes) and di�usive exchange between streamtubes. A variable

density formulation of the streamfunction is presented by Evans and Ra�ensperger

(1992), which they use to model 
ow near a salt dome. They show that in the case

of gravity driven, single-phase 
ow the streamfunction should be derived in terms of

mass 
ux rather than volume 
ux. Finally, several authors present extension of the

streamtube method to three-dimensions (Matanga 1993, Zijl 1986, Bear 1972, and

Yih 1957).

2.4 Boundary Element Methods

The use of streamtubes to generate solutions for particular displacement processes

rests on the ability to generate streamlines for a particular reservoir geometry and

con�guration of wells. Streamlines can be found by either solving for the pressure

distribution and then using Darcy's law to �nd the 
ow �eld and the resulting stream-

lines by tracing a particle from a source to sink, or by solving for the streamfunction

directly. If the reservoir is homogeneous and the well pattern is symmetric and re-

peatable to in�nity, superposition can be used to �nd explicit expressions for the

velocity vector anywhere in the reservoir (Muskat 1937, LeBlanc and Caudle 1971,

Wang et al. 1981). On the other hand, if the reservoir has an irregular boundary

placing image wells so as to honor the reservoir boundary becomes di�cult and a

trial-and-error solution is necessary (Lin 1972).
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An interesting and e�cient alternative to generate streamlines, particularly for

domains with an arbitrary boundary, is provided by the boundary element method

(BEM). The BEM rests on Green's second identity and features a number of advan-

tages over the conventional �nite di�erence method (Masukawa and Horne, 1988): (a)

discretization errors occur on the boundary only, thereby reducing numerical di�usion

and grid orientation e�ects, (b) there are few restrictions on �eld geometries, (c) a

reduction of the problem dimensionality by one (3D problems are reduced to 2D, 2D

problems to 1D), and (d) the 
ow potential and velocity can be determined for any

point in the domain. A number of authors have presented applications of the BEM

method to solve subsurface 
uid 
ow problems. Liu et al. (1981) solves a moving

interface problem and present numerical and experimental results for the tilting of

a vertical interface in a Hele-Shaw cell. Lafe et al. (1981) extend the BEM method

to solve nonlinear equations and equations that have nonconstant coe�cients. Both,

Cheng (1984) and Lafe and Cheng (1987) develop the BEM method for heterogeneous

domains.

Applications of the BEM to reservoir engineering are also presented byMasukawa

and Horne (1988) who apply it to immiscible displacement problems. Numbere and

Tiab (1988) present the BEM methods as an improved streamline generating tech-

nique, while Sato (1992), and Sato and Horne (1993) use a perturbation approach to

solve steady-state and transient 
ow problems in heterogeneous domains. An elegant

application of the BEM to track streamlines across fractures is presented by Sato and

Abbaszadeh (1994).

Although powerful, the BEMmethod has been slow to gain acceptance in petroleum

engineering research, probably due to its involved mathematical formulation and its

limitations in handling heterogeneous domains. Sato and Horne (1993) use regular

perturbation methods to decompose the underlying equations for the heterogeneous

case and are able to obtain streamlines. Nevertheless, they caution against slow

convergence and divergence of the perturbation series as the magnitude of spatial

variability increases.
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2.5 Front Tracking

A related method to the streamtube approach is the front tracking method. The

central idea of the front tracking method is to move fronts with their characteristic

velocities along streamlines, thereby retaining saturation discontinuities (shocks) that

arise in the solutions of hyperbolic conservation equations.

Sheldon and Dougherty (1964), Dougherty and Sheldon (1964), andMorel-Seytoux

(1965) introduced the idea of front-tracking (sometimes referred to as moving inter-

face method) to the petroleum literature. Sheldon and Dougherty discuss the general

idea of moving a single 
uid interface with time and Dougherty and Sheldon then

apply these ideas to a water
ood in which the 1D saturation pro�le is treated as a

series of fronts. Morel-Seytoux introduces an `analytical-numerical' method in which

the streamlines are found analytically for the unit mobility ratio case and then used

to �nd a scale-factor in the frontal advance equations.

More recent applications of the front tracking approach are due to Glimm et al.

(1983), Ewing et al. (1983), and Bratvedt et al. (1989). The approach presented

by Bratvedt et al. is particularly interesting because it directly relates to the idea

of updating streamtubes in nonlinear displacements (Martin et al. 1973, Renard

1990) and moving saturation along new streamtubes. In particular, Bratvedt et

al. use a piecewise linear approximation of the fractional 
ow function, which leads

to a saturation pro�le that is piecewise constant, in the same manner as assumed

by Dougherty and Sheldon (1964). Each saturation front is then considered as a

local Riemann problem and can be moved forward in time by using its characteristic

velocity. Bratvedt et al. are able to account for colliding fronts and apply their

method to �eld scale problems with good results.

2.6 Concluding Remarks

A substantial amount of work has been done in trying to use streamlines and stream-

tubes as a predictive tool for �eld scale displacements. Nevertheless, much room for

improvement remains, particularly in trying to account for reservoir heterogeneity
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and the inherent nonlinearity in the velocity �eld for unstable displacements. This

work extends the streamtube method to consider these issues. Cross-sectional do-

mains are used emphasizing reservoir heterogeneity, and streamtubes are updated

periodically to account for nonlinear behavior. Solutions for various displacement

mechanisms are then constructed by treating streamtubes as true one-dimensional

systems along which mass conservation solution(s) can be mapped, thus retaining

the essential physics of 
ow. A `Riemann approach' is used to map one-dimensional

solutions along periodically updated streamtubes; this is di�erent from any previous

streamtube/streamline methods and is introduced to allow the use of one-dimensional

Riemann solutions along changing streamtubes. As a result, the streamtube method

becomes particularly powerful in the case of compositional solutions, where one-

dimensional solutions containing all the relevant physics are combined with stream-

tubes to produce very fast and accurate displacement predictions for heterogeneous

systems.
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Mathematical Model

This chapter introduces the mathematical model for simulating 
uid 
ow through

porous media using streamtubes. The streamfunction for two-dimensional, heteroge-

neous media is derived and the appropriate boundary conditions presented. The con-

cept of a streamtube as a pseudo one-dimensional system is introduced, and the map-

ping of a one-dimensional solution onto streamtubes to construct a two-dimensional

solution is discussed.

3.1 Introduction

The streamtube approach rests on two key ideas: (a) generating streamlines and

streamtubes for the particular domain of interest and (b) mapping of a one-dimensional

solution along each streamtube. These central ideas, and the key assumptions asso-

ciated with them, are developed in this chapter.

The streamfunction is discussed in several textbooks (Muskat 1937, Bear 1972,

Strack 1989), and for a general discussion the reader is referred to these sources. In

this chapter, the governing partial di�erential equation for the streamfunction and

the appropriate boundary conditions are derived for a cross-sectional heterogeneous

domain. Injection is assumed to occur over the entire left face of the domain and

production over the entire right face. The top and bottom boundaries are treated as

no-
ow boundaries.

The choice of a cross-sectional domain is motivated by the interest to understand

19
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the e�ects of heterogeneity on nonlinear displacement processes. Furthermore, in a

cross-sectional domain the streamlines can be solved for directly and very easily. In

the case of areal problems with multiple wells, the streamfunction can still be used

although it becomes multivalued and branch cuts (bounding streamlines) must be

found (Emmanuel et al. 1989). For these cases it may be easier to determine the

pressure distribution and combine it with Darcy's Law to �nd the underlying total

velocity �eld and trace streamlines by launching particles.

3.2 The Streamfunction - Constant Coe�cients

By de�nition, a streamline is a line everywhere tangent to the velocity vector (Muskat

1937, Bear 1972, Strack 1989) at any instant in time. In parametric form, a streamline

can be written as

x = x(s) ; y = y(s) :1 (3:1)

The slope of a velocity vector anywhere along a streamline is given by

dy=ds

dx=ds
=

uy

ux
;

which can be rearranged as

uy
dx

ds
� ux

dy

ds
= 0 : (3:2)

ux and uy are the Darcy velocity components in the x and y direction respectively.

Consider now a function 	, called the streamfunction. If the streamfunction 	 is

required to be constant along a streamline, then it must hold that

d	 =
@	

@x

dx

ds
+
@	

@y

dy

ds
= 0 : (3:3)

1Streamlines, of course, exist in unsteady 
ow as well: x = x(s; t) ; y = y(s; t). In this case
one distinguishes between pathlines, streamlines, and streaklines. The pathline is the locus of a
particle in space as time passes; a streamline is a line everywhere tangent to the velocity vector;
and a streakline is the locus of all points seen by a 
uid particle that passed through a �xed point
space at some earlier time (Bear 1972). In steady state 
ow pathlines, streamlines, and streaklines
coincide, whereas in unsteady state 
ow they do not.
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Comparisons of terms with Eq. 3.2 gives

@	

@x
= uy ;

@	

@y
= �ux ; (3:4)

and substituting for ux and uy using Darcy's law returns

@	

@x
= �

@P

@y
;

@	

@y
= ��@P

@x
;

where � is the mobility of the 
uid. Assuming that � is spatially constant (homo-

geneous 
uid and rock properties) it can be taken into the partial derivatives such

that
@	

@x
=
@(�P )

@y
;

@	

@y
= �@(�P )

@x

and setting � = �P gives

@	

@x
=
@�

@y
;

@	

@y
= �@�

@x
: (3:5)

Equations 3.5 are the well known Cauchy-Riemann equations2 that arise in the study

of functions of a complex variable (Churchill and Brown 1990).

In particular, if a function f(z) = u(x; y)+iv(x; y) of a complex variable z = x+iy

is said to be analytic, then the Cauchy-Riemann equations will hold for the functions

u and v:3 ux = vy and uy = �vx. The function f(z) is analytic if its derivative,

f 0(z), exists everywhere in the domain D. The importance of analytic functions for

modeling 
uid 
ow hinges on the fact that if f (z) is analytic inD, then its component

functions u and v are harmonic in D. Harmonic functions are functions that satisfy

Laplace's equation. Thus, if f (z) = u(x; y) + iv(x; y) is analytic, then u and v will

satisfy the Cauchy-Riemann equations as well as

uxx + uyy = 0 ; vxx + vyy = 0:

In 
uid 
ow through porous media an analytic function is referred to as the complex

2The Cauchy-Riemann equations are named after the French mathematician A.L. Cauchy (1789-
1857) who discovered and used them, and after the German mathematician G.F.B. Riemann (1826-
1866), who used them in the development of the theory of functions of a complex variable.

3Here u is simply used as a function name and is not to be confused with the Darcy's velocity.
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potential (Muskat 1937, Bear 1972, Strack 1989) and written as


(x; y) = �(x; y) + i	(x; y) ; (3:6)

where � is the potential function and 	 is the streamfunction. Thus, a complex

potential 
 that is analytic in D will give the governing partial di�erential equation

for the streamfunction as simply

@2	

@x2
+
@2	

@y2
= 0 : (3:7)

For some homogeneous domains 
 can be found analytically using conformal mapping.

� and 	, of course, give rise to the well known orthogonal 
ow nets that are widely

used in hydrology.

3.3 The Streamfunction - Variable Coe�cients

For this work, the interest lies in deriving the governing partial di�erential equation for

the streamfunction which accounts for reservoir heterogeneity and spatially varying


uid properties (relative permeabilities and viscosities). Substituting for Darcy's law

in Eq. 3.4, gives
@	

@x
= ��y

@P

@y
;

@	

@y
= �x

@P

@x
; (3:8)

where �x and �y now are the total 
uid mobilities in the x and y direction and given

by

�x =
NpX
j=1

kxkrj

�j
; �y =

NpX
j=1

kykrj

�j
: (3:9)

j is the phase index, Np is the total number of phases present, kx and ky are the abso-

lute permeabilities in the x and y direction respectively, krj is the relative permeability

of phase j, and �j is the viscosity of phase j. The phase relative permeabilities krj

and phase viscosities �j are indirect functions of x and y since they depend on phase

saturations/compositions which in turn are functions of x and y.

Eqs. 3.8 are still Cauchy-Riemann equations and can be expressed as

1

�y

@	

@x
= �@P

@y
;

1

�x

@	

@y
=
@P

@x
: (3:10)
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It is important to note that the Cauchy-Riemann equations alone are not a su�-

cient condition for the existence of an analytical function. Rather,a function f(z) =

u(x; y) + iv(x; y) is analytic in a domain D if and only if v is a harmonic conjugate

of u in D. In other words, to �nd the complex potential 
 = P + i�	, where the bar

indicates that �	 is now related to 	 by

@ �	

@x
=

1

�y

@	

@x
;

@ �	

@y
=

1

�x

@	

@y
:

it must hold that
@

@x

 
1

�y

@	

@x

!
+

@

@y

 
1

�x

@	

@y

!
= 0 : (3:11)

and �	 must be a harmonic conjugate of P (Bear 1972).

Eq. 3.11 is the governing pde for the streamfunction 	 and accounts for reservoir

heterogeneity through its nonconstant spatial coe�cients. In practice the complex

potential 
 is never found and usually only one of the component functions is used

for displacement calculations4. In this work, the streamfunction 	 is the function of

interest and solved by applying Eq. 3.11 to a particular domain D.

A second, very simple derivation leading to Eq. 3.11 as well, begins by stating

that P is a single-valued function in D (Martin and Wegner 1979). Then the mixed

partials of P must be equal leading to

@

@x

 
@P

@y

!
=

@

@y

 
@P

@x

!
; (3:12)

and substituting for the pressure gradients from the Cauchy-Riemann equations

(Eqs. 3.8) gives
@

@x

 
� 1

�y

@	

@x

!
=

@

@y

 
1

�x

@	

@y

!
; (3:13)

4The same argument used to �nd 	 can be used to �nd P . In this case, the Cauchy-Riemann
equations are written as

@	

@x
= ��y

@P

@y
;

@	

@y
= �x

@P

@x
;

the complex potential is given by 
 = �P + i	 and the governing pde for P is

@

@x

�
�x

@P

@x

�
+

@

@y

�
�y

@P

@y

�
= 0 :



chapter 3 mathematical model 24

which returns the same governing equation for the streamfunction 	 as Eq. 3.11

@

@x

 
1

�y

@	

@x

!
+

@

@y

 
1

�x

@	

@y

!
= 0 :

3.4 Boundary Conditions

Equation 3.11 is an elliptic partial di�erential equation, which requires either Neu-

mann or Dirichlet type boundary conditions. Only cross-sectional domains are con-

sidered in this work, and therefore the boundary conditions to be considered are

no-
ow at the top and bottom of the domain and constant pressure or uniform rate

at either end. The boundary conditions for the streamfunction are particularly easy

to formulate, once a physical interpretation is given to the streamfunction 	.

The volumetric 
owrate at any point in the domain can be written in di�erential

form as

dQ = ~u � d ~A ; (3:14)

where d ~A is an arbitrary area between two adjacent streamlines de�ned as d ~A =

~ez�d~s. ~ez is the unit vector perpendicular to the xy plane and ds is the length of d ~A.
The total volumetric 
ow rate across an arbitrary area A, between two streamlines

A and B, is then simply given by (Bear 1972, p.226)Z
B

A

~u � d ~A = �QAB =
Z
B

A

~u � (~ez � d~s)

=
Z
B

A

uxdy � uydx

=
Z
B

A

d	 = 	B �	A (3.15)

In other words, the total 
ow rate between two streamlines is simply given by the

di�erence in value of the streamfunction associated with each streamline.

Using this fact, the boundary conditions for the cross sectional domain are in-

deed easy to �nd. Since the top and bottom no 
ow boundaries and are themselves

streamlines, the di�erence in the value of the streamfunction between the two must

equal to the total 
owrate. An obvious choice then is to set the bottom boundary to
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@

@x

�
1

�y

@	

@x

�
+ @

@y

�
1

�x

@	

@y

�
= 0

	 = Qtotal

	 = 0

	 = yQtotal 	 = yQtotal

or
	x = 0 	x = 0

or

Figure 3.1: Possible boundary conditions of the streamfunction 	.

	 = 0 and the top boundary to 	 = Qtotal
5. Similarly, a uniform rate distribution

along the inlet or outlet face must be given by a linear distribution of 	 from 0 to

Qtotal. Thus,

	in=out = yQtotal ; 0 � y � 1 : (3:16)

To �nd the equivalent of a constant pressure/total rate boundary condition in terms

of the streamfunction it is necessary to consider the Cauchy-Riemann equation

1

�y

@	

@x
= �@P

@y
:

A constant pressure boundary states that gradient in the y direction must be zero.

For a nonzero coe�cient ��1
y

it follows that

@P

@y
= 0 =) @	

@x
= 0 : (3:17)

Total 
ow is automatically honored by the value associated with the top and bottom

limiting streamlines. The two possible boundary conditions for the the inlet and

outlet end are summarized in Fig. 3.1.

5Clearly, the opposite choice is just as good.
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3.5 Numerical Solution

The numerical solution of Eq. 3.11 in a heterogeneous domain with any of the bound-

ary conditions speci�ed in Fig. 3.1 is straightforward and well documented in the

literature (Aziz and Settari 1979). A standard �ve-point �nite di�erence formulation

is used to discretize Eq. 3.11 resulting in

A	i+1;j +B	i�1;j + C	i;j+1 +D	i;j�1 � (A+B + C +D)	i+1;j = 0 ; (3:18)

where the coe�cients A,B,C, and D are given by

A =
1

�x2

 
1

�y

!
i+1=2;j

; (3.19)

B =
1

�x2

 
1

�y

!
i�1=2;j

; (3.20)

C =
1

�y2

�
1

�x

�
i;j+1=2

; (3.21)

D =
1

�y2

�
1

�x

�
i;j+1=2

: (3.22)

In solving for the streamfunction using Eq. 3.18, it is important to notice that the

gradient of 	 in the x-direction is associated with the reciprocal of the mobility in the

y-direction. This is di�erent, of course, from solving for pressure, where the gradient

of P in the x-direction is associated with the mobility in the x-direction. � in Eq. 3.19

- 3.22 is the total mobility and can never be equal to zero unless the block absolute

permeability is zero. The harmonic average is used to �nd the value at the internodal

points (i� 1=2; j � 1=2). As an example, the coe�cient A would be given by

A =
1

�x2

 
�yi;j + �yi+1;j

2�yi;j�yi+1;j

!
: (3:23)

Because of the Cauchy-Riemann equations, the streamfunction grid is shifted with

respect to the traditional pressure/permeability grid as shown in Fig. 3.2. A grid with

NX�NY permeability values will give rise to a (NX+1)� (NY +1) streamfunction

grid, which in turn results in a system of (NX � 1)� (NY � 1) linear equations.
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A
A

Streamfunction Grid

Pressure/Permeability Grid
Cauchy-Riemann Relations

In

Ψ = 0

Ψx = 0

Figure 3.2: Numerical grid for streamfunction in relation to the traditional block-
centered pressure/permeability grid.

3.6 Streamtubes

Once the streamfunction has been solved for the particular heterogeneous domain of

interest, streamtubes are de�ned by considering two adjacent streamlines: N stream-

lines will de�ne N � 1 streamtubes.

The advantage of using streamtubes versus streamlines as the fundamental ob-

ject on which to map a one dimensional solution is that streamtubes o�er a visual

interpretation of the local 
ow velocity whereas streamlines do not. Tracing a sin-

gle streamline from inlet to outlet yields no information about how fast a particle

moves along that streamline. A streamtube on the other hand, allows identi�cation

of slow and fast 
ow regions: thick sections of a streamtube correspond to slow 
ow

regions, thin sections to fast 
ow regions. The geometry of the streamtubes therefore

captures the distribution of the 
ow velocity imposed by the underlying permeability

�eld as demonstrated in Fig. 3.3. An additional advantage of the streamtube ver-

sus the streamline approach has to do with mapping the one-dimensional solution
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(a) Uniform Distribution

 

 

(b) White Noise Distribution

 

 

(c) Correlated Distribution

Figure 3.3: Streamtube geometries as a function of permeability correlation. From

top to bottom: (a) homogeneous distribution , (b) white noise (no correlation), and
(c) correlated permeability �eld.
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Ψ = 0

Ψ = 1

Streamline

NX+1 Interpolation Planes

Ψ = 0.5

Ψ = 0.6

Figure 3.4: Simple interpolation algorithm used to determine stream-
lines/streamtubes for the cross-sectional problem.

back onto the two-dimensional cartesian grid, which is necessary for updating the to-

tal mobility in nonlinear displacements and plotting of the concentration/saturation

distributions6.

Once the streamfunction has been solved on the discretized domain, constructing

the streamtubes becomes a contouring problem. A very simple approach was used

here, motivated mainly by the geometry of the cross-sectional problem: the stream-

function was interpolated along vertical lines corresponding to the NX + 1 	-nodes

as shown in Fig. 3.4. This simple interpolation approach produces a good approxi-

mation of the actual streamlines/streamtubes because the main direction of 
ow is in

the x-direction and because the number of blocks in the x-direction is usually taken

to be larger than in the y-direction. A particular appealing feature of this simple con-

touring approach is that each streamtube will have the same number of (x; y) points

de�ning its location in space, thereby making it very easy to treat the streamtubes

as geometrical objects for integration and mapping purposes.

6Mathematically integrating along a streamline to obtain a time-of-
ight coordinate (Parsons
1972, King et al. 1993) or along a streamtube to obtain cumulative volume injected leads to identical
solutions.
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3.7 Streamtubes as 1D Systems

The key idea in using streamtubes to model two-dimensional displacements is to

treat each streamtube as a one-dimensional system. Higgins and Leighton (1962a,

1962b) showed that in order to map a one-dimensional solution along streamtubes,

the solution must scale volumetrically. Hewett and Behrens (1991) present a nice

review on scaling of one-dimensional, hyperbolic solutions along streamtubes.

Treating each streamtube as a one-dimensional system automatically associates

a pore volume with it, which must be a fraction of the total pore volume of the

system. By de�nition, a streamtube will see a volumetric 
owrate which is given

by the di�erence of the streamfunction associated with the bounding streamlines

(Eq. 3.15). Therefore, for each streamtube it is possible to use the common form of

dimensionless time given by

tDi =

R
qidt

V P

; (3:24)

where qi is the 
owrate of streamtube i given by 	B�	A, with the subscripts A and

B referring to the bounding streamlines, and V P is an arbitrary pore volume used

for scaling. If all streamtubes see the same �	 (i.e, the streamlines are found by

interpolating using a constant �	), then

Q =
NX
i

qi = q
NX
i

= qN ; (3:25)

where N is the number of streamtubes, and the dimensionless time for each stream-

tube can be written as

tDi =

R
qidt

V P

=

R
qdt

V P

=

R
Qdt

N V P

: (3:26)

Similarly, a dimensionless length can be associated with each streamtube given by

xDi =

R
�Ai(�)d�

V P

; (3:27)

where Ai is the area of the streamtube as a function of a one-dimensional coordinate,

�, along a streamtube. The `best' choice for V P is clearly

V P =
VPT
N

; (3:28)
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where VPT is the total system pore volume and N is the number of streamtubes. In

the limit of a homogeneous system each streamtube will have a dimensionless `length'

of xD = 1.

With dimensionless time and dimensionless distance de�ned for each streamtube

any one-dimensional solutions to conservation equations that scale volumetrically

can be mapped onto a streamtube. For example, the conservation equation along a

general, one-dimensional path � for a tracer with no di�usion is given by

�
@(AC)

@t
+ q

@C

@�
= 0 : (3:29)

If the system has a constant cross section, then � = x, A = constant, and the well

known expression

�
@C

@t
+ u

@C

@x
= 0 (3:30)

results, where u = q=A is the Darcy 
ow velocity. On the other hand, if the system is

along some general coordinate �, and the area is a function of � such that A = A(�),

then Eq. 3.29 can be written as

1

q

@C

@t
+

1

�A(�)

@C

@�
= 0 : (3:31)

Multiplying by the pore volume, V P , gives

@C

(q@t)=V P

+
@C

(�A(�)@�)=V P

= 0 ; (3:32)

which de�nes the dimensionless variables

tD =

R
qdt

V P

; xD =

R
�A(�)d�

V P

:

With dimensionless time and distance de�ned along each streamtube, it is also pos-

sible to de�ne a dimensionless velocity as

vDi =
xDi

tDi

=

 R
�Ai(�)d�

V P

! 
N V PR
Qdt

!
=
N
R
�Ai(�)d�R
Qdt

: (3:33)

The importance of Eq. 3.33 lies in the fact that solutions that scale as xD=tD can

now be mapped directly onto a streamtube by simply evaluating Eq. 3.33. It is

worth noting that the V P cancels out in Eq. 3.33, which says that the dimensionless

velocity does not depend on the choice of V P , as Hewett and Behrens (1991) point
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out. However, it is also true that to de�ne the dimensionless variables xD and tD

explicitly, a choice for V P must be made.

3.7.1 Mapping of a 1D Solution - Method A

With the geometry of the streamtube determined, �nding either the dimensionless

distance or dimensionless velocity is a simple matter of evaluating the integralZ
�Ai(�)d� (3:34)

along each streamtube. A �rst approximation to Eq. 3.34 can be found by setting the

area A as the di�erence in the y coordinate of two streamlines de�ning a streamtube

at a particular value of x. Since the streamlines are piecewise linear functions of

x, with values known at the N + 1 nodes in the x-direction, the pore volume as a

function of x may be approximated asZ
�

0

�Ai(�)d� �
Z

X

0

�(yA � yB)dx

� �x�

2

IX
i=1

�
yAi + yAi+1 � yBi

� yBi+1

�
: (3.35)

where yA and yB are the y-coordinates of the piecewise linear streamlines, I is a node

such that I � (N + 1), and � is assumed constant. The interpretation of Eq. 3.35

is shown graphically in Fig. 3.5. Ideally, the cross sectional area A should coincide

with the isobar at the particular point at which the integration is desired. On the

other hand, it can be argued that the error is small, since the 
ow is mainly in

the x-direction, and the resulting pressure contours will be `fairly' vertical. Further-

more, by increasing the number of streamtubes the error is reduced further, since the

integration that would have taken place along a single streamtube is now split up

among several streamtubes, which can better approximate the cross-sectional area.

But most importantly, the error is not cumulative. Instead it is a function only of

the approximation of A at the upper bound of the integral of Eq. 3.35 such that�����
Z

�

0

�Ai(�)d� �
�x�

2

IX
i=1

(�yi +�yi+1)

����� / jA(�)��y(�)j (3:36)
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yA

yB

yA - yB

∆X

X

Figure 3.5: Simple integration method along streamtube to determine the cumulative
pore volume at point �.

where �y = yA � yB.

3.7.2 Mapping of a 1D Solution - Method B

Although the error in �nding the pore volume of a particular streamtube usingMethod

A outlined in the previous section is small, particularly if su�cient streamtubes are

used, it does have the disadvantage of implicitly stating that fronts can be mapped as

vertical lines along a streamtube. This may result in rather `jagged' looking fronts,

especially if there strong vertical 
ow. A method that will avoid this is shown graph-

ically in Fig. 3.6. Instead of using a single vertical line to approximate the cross

sectional area A, two perpendicular lines are dropped from the center streamline to

the bounding streamlines. When a perpendicular line can not be dropped onto one of

the streamlines, a vertical segment as in Method A is assumed. Although this will not

improve the error caused by Method A, it does result in smoother looking fronts. It is

worth noting that neither method A nor method B will be able to capture streamlines

that actually 
ow `backwards'. Although this may happen, it is not considered here.
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AAA
AAA
Method A

AAAA
AAAAMethod B

Figure 3.6: Schematic of integration methods A & B. Although method B will not

improve the error in the integration, it will generate smoother front pro�les.

3.7.3 Mapping 1D Solutions Onto a 2D Cartesian Grid

The �nal step in constructing the desired two-dimensional solution for the heteroge-

neous domain of interest is to map the one-dimensional solution onto each streamtube.

In fact, the solution must also be mapped back onto the underlying regular cartesian

grid in order to update mobilities for nonlinear problems as well as for simple plotting

purposes.

The algorithm used here closely follows the approach used by Renard (1990),

and is shown schematically in Fig. 3.7. The idea is that each cartesian grid block

has N � N regularly distributed points in its interior. Each point will therefore fall

within a particular streamtube and can be associated with a value of the streamtube's

dimensionless pore volume xD. For a particular time tD it therefore `sees' a concen-

tration/saturation value as dictated by the one-dimensional solution. The average

grid block value is then simply computed from all the values of the points within it.

It is clear that given `su�cient' streamtubes and `su�cient' points within each grid

block, the errors caused by the mapping algorithm will be minor. The sensitivity of

the number of streamtubes and mapping nodes on the solution is examined in the

next Chapter (Fig. 4.6).
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Cartesian Grid Block

Nodes used for mapping

Figure 3.7: Mapping of one-dimensional solution along streamtubes onto a regular

underlying cartesian grid.



Chapter 4

Unit Mobility Displacements

This chapter discusses modeling of unit mobility (tracer) displacements using stream-

tubes. Two-dimensional solutions devoid of numerical di�usion are found by map-

ping a one-dimensional, piston-like solution along streamtubes. Longitudinal physical

di�usion is added to the two-dimensional solution by using a convection-di�usion so-

lution along the streamtubes. Under unit mobility assumptions, the two-dimensional

streamtube solution is shown to approach the exact solution in the limit of in�nite

streamtubes.

4.1 Introduction

Unit mobility displacements have been researched extensively in the past. They serve

as a �rst stepping stone to understand the interaction of more complicated, non-

linear multiphase, multicomponent displacements with reservoir heterogeneity. The

numerical advantage of tracer displacements is that the elliptic equation governing

the potential 
ow �eld is decoupled from the mass conservation equations. The prob-

lem becomes linear in pressure/
ow potential, and the numerically expensive pressure

equation has to be solved only once to model the displacement over any desired time

span, tD. Tracer displacements have found widespread use in two major areas of

petroleum research: to study numerical di�usion and to quantify the e�ects reservoir

heterogeneities (Abbaszadeh-Dehghani 1982, Wattenbarger 1993).

The tracer assumption has also been used extensively in streamtube modeling

36
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(see Chapter 2), because most authors consider the streamtubes as �xed in time,

even for two-phase displacements where the total velocity is a function of saturation.

This chapter introduces the streamtube approach for tracer displacements, outlin-

ing the underlying method to construct two-dimensional solutions for heterogeneous

reservoirs that will be applied to nonlinear displacements in the following chapters.

4.2 Streamtubes

As presented in Chapter 3, the governing partial di�erential equation for the stream-

function in a heterogeneous domain is given by

@

@x

 
1

�y

@	

@x

!
+

@

@y

 
1

�x

@	

@y

!
= 0 ; (4:1)

where �x and �y are the spatially varying 
uid mobilities in the x and y directions

given by

�x =
kx

�
; �y =

ky

�
: (4:2)

kx and ky are the absolute permeabilities in the x and y direction respectively, and �

is the constant, single-phase viscosity1. Considering the heterogeneous �eld2 shown

in Fig. 4.1 and applying a constant uniform 
ux boundary condition at the inlet and

a constant pressure boundary condition at the outlet3 produces the set of stream-

lines/streamtubes shown in Fig. 4.2. These streamtubes can now be combined with

any one-dimensional tracer solution to �nd a two-dimensional displacement.

1Since � is constant, Eq. 4.1 can be written as

@

@x

�
1

ky

@	

@x

�
+

@

@y

�
1

kx

@	

@y

�
= 0 : (4:3)

2See Appendix A for a description of the method used to generate permeability �elds.
3See Chapter 3 for a discussion on boundary conditions.
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Figure 4.1: Permeability map with logarithmic scaling on a 250x100 grid. The corre-
lation length is � � 0:3 and the standard deviation is �lnK = 1:0.
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Figure 4.2: Streamlines for permeability �eld shown in Fig. 4.1.
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4.3 2D Displacements - No Physical Di�usion

4.3.1 The 1D Solution

The general material balance for the isothermal 
ow of component i, assuming no

chemical reactions and no adsorption/desorption, is given by (Lake 1989, p.29)

@

@t

0
@� NPX

j=1

�jSj!ij

1
A +r �

0
@NPX
j=1

�j!ij~uj � �Sj�j
~~Kij � r!ij

1
A = 0 ; (4:4)

where

�j = molar density of phase j ,

Sj = saturation of phase j ,

!ij = mole fraction of component i in phase j ,

uj = Darcy velocity of phase j ,

Kij= dispersion of component i in phase j,

Np = number of phases present .

The Darcy velocity for phase j is given by

~uj = �
krj

~~k

�j
�
�
~rPj + �j~g

�
; (4:5)

where

krj = relative permeability of phase j ,

�j = viscosity of phase j ,
~~k = absolute permeability tensor ,

P = pressure,

~g = gravity .

Assuming (1) single-phase 
ow4, (2) horizontal, one-dimensional 
ow5, (3) no di�usion6,

(4) incompressible 
uid and rock properties7, (6) ideal mixing8, (7) constant phase

4NP = 1 ; S1 = 1 ; P1 = P ; u1 = u

5~g = 0 ;
~~Ki1 = Ki1 ;

~~k = k
6Ki1 = 0
7�1 = � 6= � (P ) ; � 6= �(P )
8� =

PNc

i=1 �
�

i!i1
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viscosity9, and (8) homogeneous domain10 the conservation equation for species i

becomes

�
@(�wi)

@t
+ u

@(�wi)

@x
= 0 i = 1; � � � ; Nc : (4:6)

�wi = Ci is the volumetric concentration of component i. Introducing the dimension-

less variables

tD =
1

�L

Z
t

0

udt =
ut

�L
(4.7)

xD =
x

L
(4.8)

CDi =
Ci

C�

i

; (4.9)

gives
@CDi

@xD
+
@CDi

@tD
= 0 i = 1; � � � ; Nc : (4:10)

Restricting 
ow to two components only (Nc = 2) gives a single independent conser-

vation equation, where the component subscript is dropped for convenience, as

@CD

@xD
+
@CD

@tD
= 0 : (4:11)

Eq. 4.11 is a linear hyperbolic conservation equation. For constant initial data of the

type

CD(xD; 0)

8<
: CDl for xD � 0

CDr for xD � 0
; (4:12)

Eq. 4.11 is easily solved by the method of characteristics (Zauderer 1989, LeVeque

1992). The initial data of Eq. 4.12 has a discontinuity at xD = 0. Problems with

this type of initial data are called Riemann problems, where the subscript r refers to

the state to the right of the discontinuity and l refers to the state to the left of the

discontinuity.

9�1 = �
10k = constant
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Figure 4.3: Analytical solution for unit mobility displacement with no physical di�u-
sion.

The solution to Eq. 4.11 with the initial data given by Eq. 4.12 is an indi�erent

wave traveling at unit velocity, expressed mathematically as

CD(xD; tD) =

8<
: 1 for xD � tD

0 for xD � tD
; (4:13)

and shown graphically in Fig. 4.3. Clearly, Eq. 4.13 is a limiting solution, since it

represents a sharp front traveling at unit velocity without ever di�using. In 
uid


ow through porous media, both molecular di�usion and velocity variations at the

pore scale cause the front to di�use with time (Bear 1972). But as with all limiting

solutions, Eq. 4.13 is important because it is a reference solution against which to

measure numerical solutions that invariably include numerical di�usion. In a similar

way then, mapping Eq. 4.13 onto streamtubes will lead to a limiting, di�usion-free,

two-dimensional solution that can be used as a benchmark for testing numerical

schemes.
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Figure 4.4: Example solution for the two dimensional domain by mapping the
di�usion-free tracer solution at tD = 0:3 along each streamtube of Fig. 4.1.

4.3.2 The 2D Solution

Using the one-dimensional tracer solution given by Eq. 4.13 and the streamtubes

for the heterogeneous domain of Fig. 4.1, a two-dimensional solution is constructed

by mapping Eq. 4.13 onto each streamtube as outlined in Chapter 3. An example

solution at tD = 0:3 is shown in Fig. 4.4.

Generating the streamtube solution in Fig. 4.4 does not involve any `time-stepping',

as is the case for �nite di�erence approaches. Instead, because the dimensionless dis-

tance (Eq. 3.27) is known along each streamtube, the location of the tracer front can

be positioned immediately in each streamtube by simply �nding the xD = tD point.

All points along a streamtube associated with xD < tD will see a tracer concentration

of CD = 1, whereas all points associated with xD > tD will see a concentration of

CD = 0. To generate a solution at some later time then, the streamtube approach

does not move the old front position by a �tD, but instead generates a solution for

the new cumulative time tD + �tD. A pro�le history is constructed by mapping the

analytical solution for di�erent dimensionless times, as illustrated in Fig. 4.5.
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D_TD =  0.050000  --  TD =  0.0500/0.0500  Solves =    1
 

 

D_TD =  0.050000  --  TD =  0.1000/0.1000  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.1499/0.1500  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.1999/0.2000  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.2500/0.2500  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.3000/0.3000  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.3501/0.3500  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.4000/0.4000  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.4500/0.4500  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.5000/0.5000  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.5499/0.5500  Solves =    1

 

 

D_TD =  0.050000  --  TD =  0.5999/0.6000  Solves =    1

Figure 4.5: Displacement history at �tD = 0:05 intervals for the permeability map

(250x100 grid blocks) shown in Fig. 4.1.
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Except for the averaging occurring at the grid block level due to the mapping algo-

rithm used for transferring the one-dimensional solution onto the underlying regular

cartesian grid as outlined in Chapter 3 (see Fig. 3.7), there is no numerical di�usion

in the resulting two-dimensional solution. Instead, an area having a maximum width

of a single grid block along the front, in which the concentration can be between

0 and 1, represent the minimum level of resolution imposed by the number of grid

blocks used in the underlying cartesian grid. The displacement history in Fig. 4.5 is

signi�cant, because it represents the limiting numerical-di�usion-free tracer solution

for the heterogeneous reservoir shown in Fig. 4.1.

4.3.3 Sensitivity of 2D Solution

As pointed out in Chapter 3, the accuracy of the two-dimensional solution will depend

on the number of streamtubes used to map the one-dimensional solution as well as

on the number of `mapping nodes' used to transfer the solution from the streamtubes

back onto the regular cartesian grid. Clearly, the more streamtubes and mapping

nodes are used, the better the solution. On the other hand, there must exist a limit

on the number of streamtubes necessary to represent the two-dimensional solution: if

each streamtube has a maximum width that is smaller than the underlying cartesian

grid block, then the resolution of the front due to the large number of streamtubes

will be lost to the averaging at the grid block level.

The sensitivity of the two-dimensional solution to the number of streamtubes

and mapping nodes is demonstrated in Fig. 4.6. The same 50 � 50 heterogeneous

permeability �eld is solved using 10, 50, and 100 streamtubes with respectively 4,

9, and 25 mapping nodes per grid block. Although a di�erent permeability �eld

may give a slightly di�erent result, especially if there is strong vertical 
ow, Fig. 4.6

indicates that using approximately the same number of streamtubes as blocks in the

y-direction and 4 mapping nodes per grid block is su�cient to capture the details of

the two-dimensional solution. In fact, because fast 
ow regions produce a bunching

of streamtubes, these areas will automatically produce a better resolution compared

to slow 
ow regions, which give rise to `fatter' streamtubes. Since the high 
ow

regions are the regions of primary interest, relatively few streamtubes (compared to
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Figure 4.6: Sensitivity of two-dimensional solution on the number of streamtubes
and mapping nodes per grid block. The number of streamtubes increases from top

to bottom (10,50,100) and the number of mapping nodes increases from left to right

(4, 9, 25). The underlying heterogeneous permeability �eld is on a 50 � 50 cartesian
grid with �ve orders of magnitude variation in permeability and �x = 0:2, �y = 0:1.
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the number of NY grid blocks) can still produce acceptable results.

Because the number of streamtubes produces negligible overhead in the code used

in this dissertation (STREAM ), the majority of the results presented here used 2�NY

streamtubes and 9 mapping nodes per grid block.

4.4 2D Displacements - Physical Di�usion

4.4.1 The 1D Solution

In real porous media, the indi�erent wave solution derived in the previous section

is subject to `smearing' due to a combination of molecular di�usion and velocity

variations at the pore scale that induce mixing. E�ects of molecular di�usion are

generally assumed to be small compared to the e�ects of local velocity variations

( Perkins and Johnston 1963, Bear 1972, Gelhar and Axness 1983, Lake 1989). A

more realistic tracer displacement is one that accounts for such di�usive e�ects. The

derivation is analogous to the derivation of Eq. 4.11, except that now the di�usion

coe�cient K is nonzero (but spatially constant) which leads to

�
@(�wi)

@t
+ u

@(�wi)

@x
= �K

@2(�wi)

@x2
i = 1; � � � ; Nc ; (4:14)

the well-known convection-di�usion equation. Using the same dimensionless variables

as before gives the dimensionless form of the CD-equation as

@CD

@tD
+
@CD

@xD
=

1

NPe

@2CD

@x2
D

; (4:15)

where NPe is a dimensionless number called the Peclet number and given by

NPe =
uL

K
: (4:16)

A `velocity dependent' model is sometimes used to express the coe�cient K as (Lake

1989)

K = Km + �u ; (4:17)
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where Km is the molecular di�usion coe�cient and � is the dispersivity of the perme-

able medium11. If the molecular di�usion coe�cient is assumed to be small compared

to the product �u then the Peclet number may be written as

NPe =
L

�
: (4:18)

Although Eq. 4.18 is very appealing because it gives a `velocity independent' expres-

sion for the Peclet number, it must be used with caution. In general, � is not a

fundamental property of the medium and has been shown to increase with travel dis-

tance in observed �eld data12 (Neuman 1990, Arya et al.1988). On the other hand,

for a completely uncorrelated log-permeability �eld, � is indeed constant and can be

approximated from the covariance of the permeability �eld (Gelhar and Axness 1983,

Dagan 1988). Although Eq. 4.16 and Eq. 4.18 are di�erent, both equations must give

rise to the same constant value of NPe in order to honor the assumption (a spatially

constant coe�cient K) used in deriving the CD-equation.

Eq. 4.15 is now of parabolic form and thus requires an additional boundary condi-

tion compared to its hyperbolic, di�usion-free counterpart. An approximate solution

to Eq. 4.15 using the following initial and boundary conditions (Lake 1989),

CD(xD; tD = 0) = 0 (4.19)

CD(xD = 0; tD) = 1 (4.20)

CD(xD !1; tD) = 0 (4.21)

11The use of the dispersivity � is the reason why the convection-di�usion equation is often referred
to as the convection-dispersion equation. In the published literature, di�usion is used to indicate
mixing due to molecular di�usion whereas dispersion is used to indicate mixing due to local velocity
variations.

12The fact that � is found to increase with distance traveled in �eld data results from the at-
tempt to use a one-dimensional di�usive/dispersive model to capture three-dimensional, convective
dominated 
ow. E�ects due to heterogeneities across various scales are lumped into a single pa-
rameter, leading to a dependence of � on distance traveled. In the streamtube method, however, at
least two heterogeneity scales are being separated explicitly: �eld scale heterogeneities are de�ned
by the streamtube geometries, while sub-streamtube heterogeneities may be captured using �. See
Section 4.4.2 for a discussion on the subject.
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Figure 4.7: One-dimensional analytical solutions for the convection-di�usion equation
at tD = 0:3 and three values of NPe.

is given by13

CD(xD; tD) =
1

2
erfc

0
@xD � tD

2
q

tD

NPe

1
A : (4:22)

Adding physical di�usion to a two-dimensional displacements therefore amounts to

mapping Eq. (4.22) onto each streamtube for a given value of NPe. Example solutions

at tD = 0:3 and three values of NPe are shown in Fig. 4.7.

4.4.2 The 2D Solution

Mapping Eq. 4.22 onto streamtubes is slightly di�erent from mapping the no-di�usion

solution, since Eq. 4.22 is clearly not scalable by xD=tD. To �nd the solution for a

particular time tD, Eq. 4.22 must be evaluated explicitly for that time. Nevertheless,

it is important to realize that as in the no-di�usion case, there is no time-stepping

13The exact solution is

CD(xD; tD) =
1

2
erfc

0
@xD � tD

2
q

tD
NPe

1
A+

1

2
exDNPeerfc

0
@xD + tD

2
q

tD
NPe

1
A ;

but the second term goes to zero exponentially as tD, xD, and NPe grow.
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involved in �nding the two-dimensional solution, since Eq. 4.22 is an analytic expres-

sion, which can be evaluated directly for any dimensionless time tD and mapped onto

the streamtubes.

Example two-dimensional solutions for the heterogeneous domain of Fig. 4.1 (250�
100 grid blocks) at tD = 0:3 and three Peclet numbers (NPe !1, NPe = 1000, and

NPe = 100) are shown in Fig. 4.8. The following issues are addressed by Fig. 4.8:

Convection vs. Di�usion

Field-scale Peclet numbers can range from 10-10000 (Arya et al. 1988) and are

typically of order 1000. Figure 4.8 shows that for this range of Peclet number physical

di�usion is likely to be a second-order e�ect. The large-scale, correlated permeability

�eld dictates the overall pro�le of the tracer and where it preferentially wants to go.

This �rst order e�ect remains dominant in the presence of small amounts of physical

di�usion.

Longitudinal vs. Transverse Di�usion

Since a streamtube is a one-dimensional system, only longitudinal di�usion is ac-

counted for in Fig. 4.8, and transverse di�usion is assumed to be negligible. The

question must be asked whether the solutions in Fig. 4.8 would have been substan-

tially di�erent if transverse di�usion had been included. Blackwell (1962) studied the

relative importance of longitudinal to transverse di�usion in sand-packed columns

and found that at slow 
ow rates, transverse di�usion may be on the same order

of longitudinal di�usion. However, as the 
ow rate increases, longitudinal di�usion

begins to dominate the displacement and several orders of magnitude di�erence may

exist between the two di�usion coe�cients. This conclusion carries over to �eld scale

displacements as well. Using stochastic continuum theory Gelhar and Axness (1983)

show that for isotropic permeability �elds the transverse macrodispersivity is several

orders of magnitude smaller than the longitudinal dispersivity. In the case of an arbi-

trarily oriented permeability �eld, the ratio of longitudinal to transverse dispersivity

is still on the order of 10�1. This is generally con�rmed by �eld data (Gelhar 1993).
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STREAMTUBES - Pe = infinity
 

 

STREAMTUBES - Pe = 1000

 

 

STREAMTUBES - Pe = 100

Figure 4.8: Including physical di�usion in M=1 displacement by mapping the

convection-di�usion equation along each streamtube at tD = 0:3. Examples at

NPe !1, NPe = 1000, and NPe = 100.
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Thus, it is fair to say that if the solutions in Fig. 4.8 are assumed on a �eld scale,

transverse di�usion would not change them signi�cantly.

Scale of the 2D Solution

Mapping a convection-di�usion solution onto the streamtubes automatically attaches

a length scale to the system. The asymptotic behavior of the longitudinal dispersivity

through a low variance, second-order stationary, permeability �eld may be expressed

as (Gelhar and Axness 1983, Dagan 1988, Neumann 1990)

� =
Z
1

0

C(h)dh �
Z
Lrep

0

C(h)dh � B�2Lrep (4:23)

where Lrep is a representative length scale beyond which the system looks `di�usive'

(or Fickian), C(h) is the covariance as a function of separation length h, and B is a

constant. For example, if the C(h) is linear between 0 and Lrep then B = 0:5 and

using Eq. 4.23, the Peclet number can be expressed as

NPe =
2

�2
L

Lrep

: (4:24)

By choosing a Peclet number then, a representative length scale (Lrep) is automatically

introduced beyond which the systems is said to be di�usive. What order of magnitude

Lrep can have though, is a matter of heated debate. If the porous medium is modeled

as a series of well{stirred `tanks' (Aris and Amundson 1957), then in the limit of a

large number of pores a Fickian di�usion model is indeed valid. In this case, Lrep

is on the order of the representative element volume (REV) used in the continuum

approach to porous media. Laboratory displacements through `homogeneous' cores

have generally con�rmed this (Brigham et al. 1961, Blackwell 1962). If Lrep is on the

order of the REV, then the two{dimensional streamtube scale could be several orders

of magnitude larger, maybe on a O(1m) or possibly even O(10m) scale.

For �eld scales, however, there exists considerable uncertainty what Lrep should

be, or even if a such number has a meaning at all. Ample experimental data from

�eld tracer tests demonstrate convincingly the inadequacy of the convection{di�usion

model in matching the integrated concentration response at the production wells

(Arya et al. 1988). Nevertheless, considerable e�ort has gone into showing under
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what conditions the convection{di�usion equation may be applicable to �eld scale

displacements and when not (Matheron and de Marsily 1980, Gelhar and Axeness

1983, Dagan 1983;1984;1988, Arya et al. 1988, Neumann 1990). Numerical exper-

iments (Smith and Schwartz 1980, Desbartes 1990, Wattenbarger 1993) have also

shown that a di�usive limit is reached only for Lrep << �c << L and �2ln k small,

where Lrep is the di�usive length scale at the pore level, �c is the correlation length

scale of the permeability �eld, and L is the domain dimension in the main direction

of 
ow. Others (Waggoner et al. 1992), on the other hand, have reported relatively

large `dispersive' regions in �{�2ln k parameter space.

The real question in applying in the CD{model to �eld{scale streamtubes though,

is whether a sub{�eld scale Lrep exists that allows the CD{solution to hold along

�eld{scale streamtubes. A numerical example of this idea is given by Wattenbarger

(1993) In essence, the idea is that each streamtube can be treated as a system having

the necessary characteristics (Lrep << �c << L and �2ln k small) so as to allow a Fick-

ian limit to be reached within each streamtube. Considering that the streamtubes, by

de�nition, will conform to the 
ow units (heterogeneity) of the system, the assumption

of treating each streamtube as a pseudo homogeneous unit that reaches a di�usive

limit is not unreasonable. In other words, a small Lrep does not necessarily preclude

the streamtubes to be on a �eld scale. For example, successful matching of �eld tracer

data using this approach has been demonstrated by Abbaszadeh{Dehghani (1982).

In summary, mapping the CD-model along �eld-scale streamtubes is an attempt to

capture sub-tube heterogeneities, which are represented numerically by specifying an

appropriate Peclet number. It represents a `nested' approach to modeling hetero-

geneities that dominate at di�erent scales: the streamtubes capture the large-scale

heterogeneities of the reservoir while the CD-solution models sub-grid block/sub-

streamtube features.

Limiting Two-Dimensional Solution

The NPe !1 solution is the limiting no-di�usion solution and serves as the reference

point to quantify any di�usive behavior. The no-di�usion solution is an important

ingredient in quantifying numerical di�usion, as will be discussed in the next section.
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4.5 Quantifying Numerical Di�usion

Mapping analytical solutions, such as Eq. 4.13 or Eq. 4.22, onto streamtubes results in

two-dimensional solutions that are completely devoid of numerical di�usion. Stream-

tube solutions can therefore be used to quantify the extent of numerical di�usion in

other numerical solutions obtained by using �nite di�erences or �nite elements.

An example of such a comparison is given in Fig. 4.9, which shows the tracer

solution without physical di�usion at tD = 0:3 compared to no-di�usion solutions

obtained using Mistress (CFL=0.2), a research code with 
ux corrected transport

developed at British Petroleum (Christie and Bond 1985) and Eclipse, a commercially

available reservoir simulator with single point upstream weighting.

In the limit of a large number of streamtubes, the streamtube solution is the exact

limiting solution for the no di�usion case, and can be used to calculate the spatial

error

�Cerr =j C(x; y)Stubes � C(x; y)FD j ; (4:25)

where the subscript FD stands for �nite di�erence. A spatial rendering of �Cerr is

shown in Fig. 4.10.

4.6 Concluding Remarks

This chapter introduced the basic concept involved in mapping a one-dimensional

solution onto streamtubes to generate a two-dimensional solution for a heterogeneous

reservoir. The key aspect in constructing a two-dimensional solution is to map the

one-dimensional solution at the new time level by going back to time tD = 0 and

integrating forward to tD = tD + �tD, rather than time-stepping from tD to tD +

�tD. For the special case of tracer 
ow, mapping the one-dimensional solution as a

Riemann solution does not involve any assumptions, since the streamtubes are �xed

in time. In the limit of `su�cient' streamtubes, the no-di�usion, two-dimensional

tracer solution is the exact limiting solution and can be used to quantify the numerical

error of traditional numerical approaches. Longitudinal physical di�usion is added by

mapping a convection-di�usion solution along streamtubes. By choosing a value for
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Figure 4.9: Comparison of concentration pro�les showing the extent of numerical dif-

fusion in �nite di�erence simulators. Streamtube method versus Mistress, a research

code with 
ux corrected transport (FCT) and Eclipse, a commercially available reser-

voir simulator with single point upstream weighting and automatic time step selection.
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Figure 4.10: Spatial distribution of the error caused by numerical di�usion in the
Mistress and Eclipse simulations shown in Fig. 4.9.

the Peclet number in the convection-di�usion model, an implicit assumption about

the scale of the two-dimensional solutions is made. In particular, sub-streamtube

heterogeneities are assumed to lead to a Fickian limit. Thus, the streamtube approach

is an example of how physical phenomena that take place at di�erent scales can be

nested into a single model: the geometries of the streamtube explicitly model large

scale heterogeneities that give rise to fast and slow 
ow regions, while the convection-

di�usion solution implicitly models sub-streamtube heterogeneities that cause local

mixing.



Chapter 5

Immiscible Displacements

This chapter discusses modeling of two-phase, immiscible displacements using stream-

tubes. The concept of mapping one{dimensional Riemann solutions along stream-

tubes is developed further, and the resulting two{dimensional solutions are shown to

match solutions obtained using a conventional �nite di�erence approach.The immisci-

ble problem is found to be only weakly nonlinear resulting in converged solutions using

two orders of magnitude fewer matrix inversions than in traditional �nite di�erence

simulation. The speed of the streamtube approach is used to study the interaction of

nonlinearity and reservoir heterogeneity in immiscible displacements, demonstrating

an increasing uncertainty in recovery with increasing reservoir heterogeneity.

5.1 Introduction

When Higgins and Leighton (1962) introduced the streamtube approach as a fast

method to predict two{phase 
ow in a �ve{spot pattern, they reported excellent

agreement with experimental data for mobility ratios ranging from 0:083 to 754.

Other authors (Higgins et al. 1964, Doyle and Wurl 1971, LeBlanc and Caudle 1971,

Martin and Wegner 1979) also reported good matches with either �eld or labora-

tory data for similar values of mobility ratios. All authors were able to account for

the nonlinearity inherent in the total velocity �eld by keeping the streamtubes �xed

and adjusting the 
owrates instead. The only published note on the failure of the

streamtube approach is by Martin et al. (1973) and, surprisingly, it is for a favorable

56
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mobility ratio case. Intuitively, high unfavorable mobility ratio displacements are

expected to have a `stronger' nonlinearity and thus be more di�cult to model nu-

merically, whereas the favorable mobility ratio displacements are by de�nition stable.

The answer is that while the end{point mobility ratios reported by many authors

are very high, the resulting 1D solutions exhibit a very long rarefaction wave lead-

ing to smooth changes in the velocity �elds. Favorable mobility ratios, on the other

hand, have self-sharpening shocks, across which properties vary abruptly leading to

much sharper changes in the velocity �elds. Two{phase immiscible displacements

with unfavorable mobility ratios and reasonable rock curves will therefore either have

shock{front mobility ratios close to 1 or just long rarefaction waves.

It is this weak nonlinearity in the velocity �eld that allows for the assump-

tion of constant streamtube geometries, which are almost universally applied in the

petroleum literature1. The assumption of �xed streamtubes is also reinforced by the

areal geometry used by all authors since, by continuity, a streamline must start and

end at a source point, leaving little room for the streamtubes to change their shape

during the displacement. Adjusting the 
ow rates for each streamtube according to

the total resistance of the system is su�cient to capture the nonlinear allocation of


uids that would result from changing streamtubes. Although the approaches dif-

fer slightly from author to author, all show convincingly that constant streamtubes

can successfully and inexpensively predict recovery for most two-dimensional, areal

water
ood problems.

5.1.1 The Riemann Approach

In this chapter, the water
ood problem is approached di�erently and used principally

to demonstrate the applicability of the Riemann approach proposed in this work and

to be used for multiphase, multicomponent displacements in later chapters. As in

the tracer case, the domain is considered to be heterogeneous and the geometry to

be cross-sectional. Compared to the areal domain, the streamlines are now no longer

pinned down by two (or more) singularities, making them `freer' to move and to re
ect

1A notable exception is Renard (1990)
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the nonlinearity in the 
ow �eld.

The principal di�erence to work done by previous authors lies is in the mapping

of the one-dimensional solution along streamtubes which are periodically updated to

model the nonlinearity of the displacement. In the Riemann approach used here, the

one-dimensional solution is treated as a solution to a Riemann problem, although the

streamtubes are updated periodically. Thus, the solution along a new streamtube

for the time level tD + �tD is not given by an integration from tD to tD + �tD,

as in conventional time-stepping algorithms, but rather as an integration from 0 to

tD+�tD, where the initial conditions are assumed to be constant right and left states.

The Riemann approach centers on treating each periodically updated streamtube as

a true one-dimensional system on which the Buckley-Leverett solution is mapped

repeatedly for di�erent times. The underlying assumption in the Riemann approach

is that the 
uid entering a streamtube remains in the streamtube and exits only at

the outlet end, even if the streamtube changes location and geometry as a function

of time. The validity of this approach is considered in the sections that follow.

5.1.2 Reasons for the Riemann Approach

A legitimate question is to ask what motivates the Riemann approach. The answer

centers on the attempt to capture the nonlinearities that exist in multiphase 
ow.

Only three authors (Martin et al. 1973, Martin and Wegner 1979, Renard 1990)

address the idea of updating the streamtubes, rather than using total 
ow resistance

to capture the nonlinear behavior of the displacement. Mathematically, updating the

streamtubes is an appealing approach because the local 
ow velocities are updated,

and the original de�nition of a streamtube as carrying a volumetric rate equal to the

di�erence in the value of its bounding streamlines is maintained. However, updating

the streamtubes poses one problem related to the initial conditions associated with

each streamtube: each time a streamtube is updated it must be initialized so that the

conservation equation(s) can be solved. The only reasonable possibility to assign new

initial conditions along an updated streamtube is to use the old, two{dimensional sat-

uration distribution on the underlying cartesian grid. Because updating a streamtube

literally means changing its position in x{y space, it is easy to see that the new initial
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conditions will not correspond to the old saturation distribution along the stream-

tube. The resulting hyperbolic problem that must be solved will be one with general,

nonconstant initial conditions. No analytical solutions exist for such problems and

the saturation distribution along the new streamtube can be moved forward in time

either (1) numerically by using a standard one{dimensional �nite{di�erence solution

along each streamtube (Bommer and Schechter 1979), or (2) by using a moving in-

terface, front{tracking algorithm (Sheldon and Dougherty 1964, Glimm et al. 1983,

Bratvedt et al. 1989). The Riemann approach, on the other hand, completely cir-

cumvents the problem of initial conditions that arises with streamtube updating: the

two{dimensional solution is approximated by N one{dimensional Riemann solutions

along changing streamtubes.

5.2 The 1D Buckley{Leverett Solution

The one-dimensional Buckley{Leverett solution is well known and well documented in

the petroleum literature (Buckley and Leverett 1941, Dake 1978, Lake 1989). Starting

from the general material balance for component i (Lake 1989, p.29)

@

@t

0
@� NPX

j=1

�jSj!ij

1
A +r �

0
@NPX
j=1

�j!ij~uj � �Sj�j
~~Kij � r!ij

1
A = 0 ; (5:1)

and assuming (1) two component, two{phase, immiscible 
ow2, (2) no di�usion3,

(3) constant and equal phase densities4, and (4) one{dimensional 
ow gives the well

known equation

�
@Sw

@t
+
@uw

@x
= 0 ; (5:2)

where the subscript for component i = 1 has been replaced with w, to keep with

the traditional application to oil{water systems. Eq. 5.2 is generally used in its

dimensionless form
@Sw

@tD
+
@fw

@xD
= 0 ; (5:3)

2!11 = !22 = 1; !12 = !21 = 0

3 ~~Kij = 0
4�1 = �2



chapter 5 immiscible displacements 60

where tD = tut=L and xD = �x=L are usual de�nitions of dimensionless time and

distance respectively, ut is the total (constant) Darcy velocity given by ut = uw + uo,

and fw is the fractional 
ow of water given by

fw =
uw

uw + uo
=

1

1 + kro�w

krw�o

: (5:4)

kro, krw, �o, and �w are the relative permeabilities and viscosities of oil and water as

indicated by the subscript5. The solution to Eq. 5.3 subject to Riemann conditions

of the form

Sw(xD; 0)

8<
: Swl for xD � 0

Swr for xD � 0
; (5:5)

where, as in the tracer case (Eq. 4.12), the subscripts l and r refer to the left and

right constant states of the discontinuity at xD = 0, can be found easily using the

method of characteristics (Zauderer 1989, LeVeque 1992). Depending on the shape of

the fractional 
ow curve, fw, the solution can contain rarefaction waves and shocks,

which are found using the velocity constraint and the entropy condition (Johns 1992).

A rarefaction wave is composed of saturations having characteristic velocities given

by
dxD

dtD
=

dfw

dSw
; (5:6)

whereas a shock travels with a characteristic velocity given by

dxD

dtD
=

fU
w
� fD

w

SU
w
� SD

w

: (5:7)

The superscripts U and D stand for upstream and downstream respectively. An

example solution for a two{phase problem with an end{point mobility ratio of 10 is

shown in Fig. 5.1.

5.3 Validation of the Riemann Approach

The Riemann approach was tested by the following numerical experiment. Using

a standard �nite di�erence simulator (Eclipse), the velocity �elds were stored for

5Eq. 5.4 assumes that the one{dimensional reservoir is homogeneous.
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Figure 5.1: Relative permeability curves (krw = S2
w
; kro = S2

o
), corresponding

fractional 
ow function for a viscosity ratio of 10 (�o = 10, �w = 1), and Buckley{
Leverett analytical solution used for testing the Riemann approach. The mobility
ratio at the shock front is Mshock = 1:36.

regular increments of dimensionless time. From each velocity �eld, the correspond-

ing streamtubes were then constructed and used to �nd the saturation pro�les by

mapping a Riemann solution along the streamtubes for that particular time. The

saturation pro�les obtained by this method were then compared to the saturation

pro�les obtained by the direct Riemann approach.

The one{dimensional solution used to test the Riemann approach is shown in

Fig. 5.1. Although the end-point mobility ratio is 10, the shock{front mobility ratio

is, in fact, only 1.36, resulting in a more stable displacement than suggested by

the end-point value alone. As was mentioned previously, this is generally true for

many water
oods with `reasonable' relative permeability curves: the frontal mobility

ratio is of order 1 even though the end-point can be of order 10 or 100 leading to a

weak nonlinearity in the total velocity. The absolute permeability �eld used in the

numerical experiment is shown in Fig. 5.2, and was derived from the �ner 250x100

�eld used in Chapter 4 by a simple geometric averaging of 2x2 blocks.

As demonstrated in Fig. 5.3, the Riemann approach agrees well with the mixed
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Figure 5.2: Permeability map with logarithmic scaling { (125x50 Grid).

method (Eclipse velocity �eld + Riemann approach). Both solutions are seen to be

devoid of numerical di�usion compared to the saturation pro�les obtained directly

from Eclipse. Figure 5.3 displays example solutions at tD = 0:2 and tD = 0:4. The

upper row shows saturation maps obtained directly from Eclipse; the middle row

shows maps obtained using the velocity from Eclipse, but mapping the solution using

the Riemann approach; and the last row shows pro�les obtained by using the Riemann

approach only.

A direct comparison of saturation maps (Fig. 5.3) as well as the integrated re-

sponse (Fig. 5.4) demonstrate that the di�erence between the two methods (Eclipse

velocity �eld + Riemann approach and direct Riemann approach) is indeed small and

the nonlinearity of the velocity �eld is captured accurately by the direct Riemann ap-

proach. In fact, it is interesting to note that numerical di�usion causes a larger

di�erence in recovery between the two methods than the approximation introduced

by the Riemann approach. This conclusion can be drawn from the fact that the ve-

locity �elds for the two recovery curves are identical and therefore the di�erence must

be attributed to numerical di�usion. That numerical di�usion has the upper hand in

the Eclipse solution is also suggested by the comparison of the saturation histories

shown in Fig. 5.5. This numerical experiment indicates that the error in the velocity
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Figure 5.3: Saturation maps at times tD = 0:2 and tD = 0:4. From top to bottom:
pro�les obtained directly from Eclipse; pro�les obtained by using the velocity �eld
from Eclipse but mapping a Riemann solution along streamtubes; pro�les obtained
by the method proposed in this thesis.
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�eld caused by the Riemann approach is indeed small compared to traditional �nite

di�erence solutions. In particular, numerical di�usion is shown to cause larger errors

than the assumption used in the Riemann approach.

5.4 Convergence of the Riemann Approach

Before using the Riemann approach to investigate other immiscible cases, the issue of

convergence is addressed in this section. In other words, at what rate must the stream-

tubes be recalculated in order to consider the solution converged? If the two-phase

immiscible problem is indeed weakly nonlinear, then it may require fewer updatings

of the pressure (or 	{�eld) than currently used in �nite di�erence simulators which

would lead to a substantial speed-up. Finite di�erence simulators use a CFL-type

(Courant et al. 1928, LeVeque 1992) stability criterion for the discretized hyperbolic

conservation equation to determine when to resolve for the pressure �eld. Strictly

speaking, this is not necessary. The CFL-condition simply states that the domain of

dependence of the �nite di�erence method must include the domain of dependence

of the hyperbolic conservation equation (LeVeque 1992), but says nothing about the

elliptic pressure equation. Solving for the pressure �eld at every time step required

by the CFL condition may be `overkilling' the problem in order to be on the safe side,

but obviously carries an enormous cost in terms of computer time.

In the streamtube approach the conservation equation is not discretized and there-

fore there is no CFL condition to worry about. The question of how many times the

streamtubes must be updated to consider the solution converged arises naturally and

is addressed by solving the previous problem repeatedly with an increasing number of

streamtube updates. Recovery curves for 1, 10, 20, 40, and 100 streamtube updates

are shown in Fig. 5.6. It is rather surprising to �nd that 20 solves are su�cient to

consider the problem converged over a range of two pore volumes. With only 20

solves, the new approach represents a reduction in computation time by two orders of

magnitude compared to the thousands of solves needed by a traditional �nite di�er-

ence simulator like Eclipse. For this particular problem (Mend = 10), Eclipse required

1600 solves which translates into a speed-up of 8000% .
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Figure 5.6: Recovery curves for 1, 10, 20, 40, and 100 streamtube updates over two
pore volumes injected (tD = 2) showing that the problem can be considered converged
if more than 20 updates are used.

5.5 Other Immiscible Solutions

This section considers other immiscible cases intended to verify the streamtube ap-

proach further as well as to use it to gain some physical insight into two{phase dis-

placements. Although several parameters a�ect the displacement e�ciency of an

immiscible displacement, only two parameters are investigated here: (a) the end-

point mobility ratio and (b) reservoir heterogeneity. Except where noted, the relative

permeabilities are assumed �xed and given by krw = S2
w
; kro = S2

o
.

5.5.1 End-Point Mobility Ratio

The end-point mobility is de�ned as

Mend =
�J

�I
=

 
kr

�

!
J

�
�

kr

�
I

; (5:8)
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where the subscripts I and J refer to initial and injected conditions respectively. For

the relative permeabilities used here, krI = krJ = 1, and the end-point mobility ratio

is simply given by the viscosity ratio,

Mend =
�o

�w
: (5:9)

Figures 5.7 and 5.8 show that the end-point mobility ratio only a�ects the rate

of convergence, with the Mend = 1 case requiring one solve, Mend = 3 less than

ten, Mend = 5 approximately ten, and the Mend = 10 case twenty solves as. The

converged recovery curves all compare in the same manner with the recovery curves

obtained from Eclipse (Fig. 5.8) due to numerical di�usion in the Eclipse solution.

A more surprising result though is that Eclipse consistently underestimates recovery

compared to the streamtube solutions | surprising because it is usually assumed

that numerical di�usion increases recovery by mitigating viscous instability, thereby

reducing viscous �ngering and early breakthrough.

A possible reason for this is that numerical di�usion in the Eclipse solution smears

the shock front and reduces its e�ectiveness in recovering the oil ahead of it. The

streamtube solution, on the other hand, maintains the piston-like recovery mechanism

by mapping an analytical solution and therefore predicts a higher oil recovery from

the reservoir. The true physical answer may lie somewhere between the two, but these

results are signi�cant because the e�ects of numerical di�usion on recovery become

quanti�able through the streamtube approach.

Another example is shown in Fig. 5.9. For this case, the end-point relative perme-

ability of the oil phase is krojSo=1 = 0:25. Keeping the same exponents as before and

assuming an oil-to-water viscosity ratio of ten (�o = 10; �w = 1) leads to an end-point

mobility ratio of Mend = 40. Even in this case, as the recovery curves in Fig. 5.10

demonstrate, the streamtube method is able to capture the nonlinearity with only 20

updates.

5.5.2 Reservoir Heterogeneity

To study the impact of reservoir heterogeneity on recovery, the Mend = 10 one-

dimensional solution of Fig. 5.1 was used to �nd recoveries up to two pore volumes
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Figure 5.7: Recovery curves for for M=1, 3, 5, and 10 showing convergence of the
streamtube approach and comparison with recovery curves obtained from Eclipse.

The permeability �eld is shown in Fig. 5.2.
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Figure 5.9: Relative permeabilities, fractional 
ow, and one-dimensional saturation
pro�le for Mend = 40. The shock-front mobility ratio is Mshock = 1:64. (krw =
S2
w
; kro = 0:25; S2

o
; �o = 10; �w = 1).

injected for the three permeability �elds shown in Fig. 5.11. All three permeability

�elds are log-normally distributed, have four orders of magnitude variation in absolute

permeability and di�er only in their correlation lengths. Although there are several

parameters to `quantify' reservoir heterogeneity, the heterogeneity index (HI), which

originated from the work of Gelhar and Axness (1983) and has been used by other

authors since (Mishra 1987, Araktingi and Orr 1993, Sorbie et al. 1992), is used here.

The heterogeneity index is given by

HI = �2ln k�c ; (5:10)

where �2ln k is the variance of the ln k{�eld and �c is the correlation length in the

x{direction. The higher HI, the `more' heterogeneous the system is said to be.

The heterogeneity index is an attractive parameter because it combines infor-

mation about the variability of the permeability �eld (�2ln k) with information about

the correlation structure of the heterogeneity (�c). The traditional Dykstra{Parson

coe�cient can be recovered from HI by recalling that

�ln k = � ln(1� VDP ) : (5:11)
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Figure 5.10: Recovery curves for the data shown in Fig. 5.9.

The streamtube method is able to give some valuable insight that may have not been

as easily observable using a standard �nite di�erence simulator. The recovery curves

of Fig. 5.12, for example, suggest that the in
uence of the nonlinearity in the velocity

�eld on recovery will depend on reservoir heterogeneity. Permeability �elds with

very short correlation lengths tend to mitigate the nonlinearity (see the case with

�c = 0:02) requiring only a few solves to converge, while longer correlation lengths

allow for stronger nonlinear behavior (see case with �c = 0:6) requiring more solves.

In reservoirs with short correlation lengths, the nonlinearity is not noticeable in the

geometry of the streamtubes. The streamtubes expand and contract many times over

the duration of the displacement but end{up, on average, to behave like streamtubes

from the tracer case. Thus, the recovery curves can be found by simply solving

for the streamtubes once and mapping the appropriate Buckley-Leverett solution, as

Fig. 5.12 clearly shows.
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Figure 5.11: Permeability �elds di�ering only in correlation length. Correlation
lengths from top to bottom: 0.02 (HI=0.04), 0.1 (HI=0.2), and 0.6 (HI=2.2). The

grid size is 125x50.
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Figure 5.12: Recovery curves for permeability �elds of Fig. 5.11 showing conver-
gence of the streamtube approach and comparison with recovery curves obtained

from Eclipse.
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As the correlation length increases the nonlinearity becomes more noticeable, and

for the extreme case of �c = 0:6, 40 updates are necessary to converge onto the so-

lution. Well de�ned 
ow paths of least resistance between the inlet and outlet now

exist, and a dominant 
ow channel is created, leading to early breakthrough. The

nonlinearity of the problem is accentuated because the injected phase increases its

total velocity along the easy 
ow path until it reaches the outlet end. To capture

this continuous increase in total velocity requires more updates of the streamtubes

compared to the shorter correlation length cases. `More', in this case, is to be un-

derstood within the context of streamtubes, but still compares very favorably to the

many solves required by a traditional �nite di�erence simulator. That the �c = 0:6

case leads to a much stronger nonlinearity in the 
ow �eld is also suggested by a

noticeable di�erence between the streamtube and the Eclipse solution.

To study further how the nonlinearity in the velocity �eld interacts with reservoir

heterogeneity, 30 geostatistical realizations, twelve of which are shown in Fig. 5.13,

having identical statistics (�c = 0:2;HI = 0:2, and 3 order of magnitude in k) were

generated. Example saturation maps at tD = 0:3 for the twelve permeability �eld

are shown in Fig. 5.14. Similarly, 30 other permeability �elds with identical statistics

(�c = 0:4;HI = 0:88, and 4 orders of magnitude in k) were produced with example

permeability �elds and saturation maps given by Fig. 5.15 and Fig. 5.16. Although

the saturation maps give an indication of the nonlinearity present in both cases, the

story is best told using the recovery curves shown in Fig. 5.17 and Fig. 5.18. The

60 recovery curves (there are 30 for each case) suggest that nonlinearity and reservoir

heterogeneity interact to give an increasing spread in recovery with increasing reser-

voir heterogeneity. In other words, it is generally not correct to state that increasing

reservoir heterogeneity will always lower recovery. A more accurate statement is that

the probability that recovery will fall in a desired interval (that may be speci�ed by

economic considerations, for example) decreases with increasing heterogeneity and

nonlinearity. It is interesting to note that the spread in recoveries for HI = 0:2 is

almost contained within the larger spread of recoveries for HI = 0:88. It is therefore

entirely possible that a given realization with HI = 0:2 (`low heterogeneity') can

return a lower recovery than a realization with HI = 0:88 (`high heterogeneity').
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Figure 5.13: Twelve permeability �elds having identical statistics: �c = 0:2;HI = 0:2,
and three orders of magnitude variation in absolute permeability.
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Figure 5.14: Saturation pro�les at tD = 0:3 for each permeability map shown in
Fig. 5.13.
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Figure 5.15: Twelve permeability �elds having identical statistics: �c = 0:4;HI =
0:88, and four orders of magnitude variation in absolute permeability.
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Figure 5.16: Saturation pro�les at tD = 0:3 for each permeability map shown in
Fig. 5.15.



chapter 5 immiscible displacements 79

0.0

0.2

0.4

0.6

0.8

1.0

D
im

en
si

on
le

ss
 R

ec
ov

er
y,

 N
pD

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Dimensionless Time, tD

HI=0.2

0.0

0.2

0.4

0.6

0.8

1.0

D
im

en
si

on
le

ss
 R

ec
ov

er
y,

 N
pD

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Dimensionless Time, tD

HI=0.88

Figure 5.17: Range of recovery curves for 30 permeability �elds with �c = 0:2; HI =
0:2, and three orders of magnitude variation in absolute permeability (left) and 30
permeability �elds with �c = 0:4;HI = 0:88, and four orders of magnitude variation
in absolute permeability (right).
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Figure 5.18: Summary of recovery range for the above cases: minimum, maximum,

and average recoveries for HI = 0:2 and HI = 0:88.
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These results suggest that the interaction of nonlinearity and reservoir hetero-

geneity can be quanti�ed as a probability on recovery or spread in recoveries. In

order to determine such probabilities, nonlinear displacements using multiple real-

izations of the same �eld must be possible in a reasonable amount of computation

time. The streamtube method combined with a one-dimensional Riemann approach is

a very quick and accurate alternative to traditional reservoir simulation approaches

and therefore o�ers a way to evaluate the recovery probabilities statistically for a

given end-point mobility ratio and heterogeneity structure.

5.6 The Higgins and Leighton Method

The streamtube approach originally proposed by Higgins and Leighton (1962a, 1962b,

1964), and subsequently used by many investigators6, centers on capturing the non-

linear behavior of the displacement by keeping the streamtube �xed but allocating the

total 
ow into each streamtube in proportion to the total 
ow resistance along each

streamtube. For areal problems, the Higgins and Leighton method has been shown

to give good approximation of recovery for both, homogeneous domains (Doyle and

Wurl 1971, Martin and Wegner 1971) and heterogeneous domains (Emanuel et al.

1989, Mathews et al. 1989). The total resistance along a streamtube i is given by

Ri =
Z

S

0

d�

A(�)�t(�)
; (5:12)

where � is a length coordinate along a streamtube (i.e. the center streamline in a

streamtube), S is the total length of each streamtube7, A(�) is the cross-sectional

area along the streamtube, and �t is the total mobility. The 
ow is then allocated in

proportion to (Hewett and Behrens, 1991)

RT

Ri

; (5:13)

6See Chapter 2: Literature Review
7Not to be confused with xD, the dimensionless pore volume coordinate along a streamtube

de�ned by the Eq. 3.27
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where RT is given by

1

RT

=
NSX
i=1

1

Ri

: (5:14)

Unlike �nding the pore volume along a streamtube using Eq. 3.34, which is all that

is required to map one-dimensional Riemann solutions along periodically changing

streamtubes (see Section 3.7) and is easily found, evaluating the integral in Eq. 5.12

is more di�cult. The reason is that to calculate Ri the product A(�)K(�), whereK(�)

is the absolute permeability, must be determined along �. For a general heterogeneous

domain, in which the permeability �eld is speci�ed by Kx and Ky components on a

regular cartesian grid, �nding the directional permeability K(�) becomes a nontriv-

ial exercise. Furthermore, if the streamtube encompasses more than one grid block

then K(�) should really be an average of the directional permeabilities along A(�).

Finding the area, A(�), is easier than �nding K(�), but must be approximated in the

absence of isobars to trace across streamtubes, much in the same way as it has to be

approximated when �nding the pore volume. The di�erence though is that in �nding

the pore volume the error in A is only felt through the upper bound of the integral

(Eq. 3.7.1), whereas in �nding the total resistance the error is integrated over the

entire length of the streamtube.

Fig. 5.19 compares recoveries for the Higgins and Leighton method to recover-

ies found using the streamtube approach proposed here as well as recoveries from

Eclipse. Although the Higgins and Leighton method returns acceptable recoveries,

the di�culty it has in capturing breakthrough time correctly with increasing mobil-

ity ratio suggests a weakness of the method in trying to model the nonlinear part

of the displacement. The Higgins and Leighton method requires a single solve for

the streamfunction and thus is clearly faster than the streamtube approach proposed

here. But given that the streamtubes have to be updated at most twenty times over

two pore volumes injected to capture the nonlinearity of the displacement, the small

savings in computation time of the Higgins and Leighton method are probably not

worth the loss of accuracy in recovery as well as the di�culties associated with �nd-

ing Ri. The fact that the Higgins and Leighton method fails to predict breakthrough

correctly as the mobility ratio of the displacement increases shows that the changing
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Figure 5.19: Comparison of recovery curves found using the streamtube approach
proposed here, Eclipse, and the Higgins and Leighton method. The Higgins and

Leighton method keeps the streamtube �xed but allocates the 
ow in proportion to

the total 
ow resistance along each streamtube.
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velocity can only roughly be approximated using a �xed streamtube/total resistance

approach.

5.7 Concluding Remarks

In this chapter, the streamtube approach was extended to model two{phase, immis-

cible displacements. To account for the changing total velocity �eld, the streamtubes

were updated periodically. The one{dimensional Buckley{Leverett solution was then

mapped along the new streamtubes as a true Riemann solution. The key result of this

chapter is to demonstrate that the error caused by the Riemann approach used for

mapping a one{dimensional solution along periodically updated streamtubes is small

and, in fact, is less signi�cant than the error introduced by numerical di�usion in �-

nite di�erence solutions. Another key result is that the weak nonlinearity of the total

velocity �eld allows for converged solutions using at most 20 streamtube updates over

two pore volumes. As a result, speed{ups by two orders of magnitude with respect

to traditional �nite di�erence solutions are achieved. The speed of the streamtube

method is put to use in a statistical approach to reservoir forecasting, demonstrating

that the spread in recovery due to equiprobable permeability �elds can be substantial.

The spread in recovery is particularly important, because it suggests that the error

caused by the numerical scheme itself may be small compared to the uncertainty intro-

duced by the statistics of the reservoir description. Finally, the streamtube approach

proposed here was also compared to the Higgins and Leighton method, demonstrating

that the nonlinear part of the 
ow problem cannot be accounted for by using a �xed

streamtube/total resistance approach. In the next chapter, the streamtube approach

is extended to ideal miscible displacements.



Chapter 6

First-Contact Miscible

Displacements

This chapter applies the streamtube approach to modeling �rst contact miscible

(FCM) displacements through heterogeneous reservoirs. Three one-dimensional so-

lutions are presented that may be combined with streamtubes to construct two-

dimensional solutions for heterogeneous systems: (1) a piston-like, unit wave velocity

solution, (2) a convection-di�usion solution, and (3) a viscous �ngering solution. The

displacement scale implied by each of these three one-dimensional solutions is dis-

cussed. The resulting two-dimensional streamtube solutions are shown to capture

overall recovery and �rst-order displacement features seen in traditional �nite dif-

ference solutions. The superior speed of the streamtube solution is put to use in

a statistical approach to reservoir forecasting: recovery curves for 180 permeability

�elds are used to demonstrate how nonlinearity in the total velocity �eld and hetero-

geneity interact to determine overall recovery.

6.1 Introduction

First-contact miscible (FCM) displacements1 in heterogeneous systems have been

studied by several authors (Araktingi and Orr, 1993, Gorell 1992, Sorbie et al. 1992,

1Sometimes also referred to as ideal miscible displacements.

84
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Waggoner et al. 1992, Christie 1989). An extensive treatment of the subject was

recently given by Tchelepi (1994). The strong interest in �rst-contact miscible dis-

placements is motivated principally by the possibility of learning more about dis-

placements which are near-miscible, such as gas and carbon-dioxide 
ooding. The

assumptions used in �rst-contact miscible 
ow isolate the convective part of the dis-

placement problem from any phase behavior considerations and allow a study of the

interaction of reservoir heterogeneity and the nonlinearity of the total velocity �eld in

determining sweep e�ciency. But the absence of any phase behavior and multiphase


ow aspects enhances the nonlinearity of the problem. Di�usive mechanisms, such as

molecular di�usion and pore scale mixing, are the only physical mechanisms available

to mitigate the original mobility contrast. As a result, �rst-contact miscible displace-

ments are very challenging to simulate numerically and are far more di�cult than the

two-phase immiscible problem discussed in Chapter 5. High mobility contrasts lead

to extreme velocity variations and su�cient grid blocks must be used to ensure that

numerical di�usion is as close as possible to representing true physical di�usion at the

grid block scale. To �nd physically meaningful simulations of �rst-contact miscible

displacements require substantial computer resources (Tchelepi 1994, Christie and

Bond 1987).

6.2 The Assumptions in FCM Flow

The assumptions for �rst-contact miscible 
ow are analogous to the assumptions used

to derive the tracer solution presented in Chapter 4. The general material balance

formulation for a component i with no chemical reactions and adsorption/desorption

given by (Lake 1989, p. 29) is

@

@t

0
@� NPX

j=1

�jSj!ij

1
A +r �

0
@NPX
j=1

�j!ij~uj � �Sj�j
~~Kij � r!ij

1
A = 0; (6:1)

and assuming (a) single-phase 
ow, (b) incompressible 
uid and rock properties, (c)

constant phase density, and (d) ideal mixing gives

�
@Ci

@t
+r �

�
Ci~u� �

~~Ki � rCi

�
= 0 : (6:2)
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Expanding the divergence term in Eq. 6.2 and applying continuity (r � ~u = 0) gives

the governing equation for miscible displacements as

�
@Ci

@t
+ ~u � rCi � �r �

�
~~Ki � rCi

�
= 0 : (6:3)

Eq. 6.3 is identical to the tracer formulation. The di�erence is hidden in the Darcy

velocity ~u which is now given by

~u =
~~k

�(C)
� rP ; (6:4)

where the viscosity � is assumed a function of concentration C. A quarter power

mixing rule, given by

�(C) =

 
C

�
1=4
s

+
1� C

�
1=4
o

!
�4

; (6:5)

is usually used as a functional relationship between � and C. �s is the `solvent'

viscosity and �o is the `oil' viscosity, which are simply the viscosities at C = 1 and

C = 0 respectively, and also de�ne the end-point mobility ratio as

M =
�o

�s
: (6:6)

Eq. 6.3 is the starting PDE for all �rst-contact miscible unstable displacements. The

`strength' of the nonlinearity in the 
ow �eld will depend on the coupling between

Eq. 6.3 and Eq. 6.4 through the mixture viscosity, �(C), and the relative magnitude

of the convective term (~u � rCi) to the di�usive term (r � ~~Ki � rCi). If the di�usive

term is large compared the convective term (small Peclet numbers), then instabilities

will tend to be mitigated. Conversely, if the convective term dominates, then the

displacement will see the growth of viscous �ngers and/or strong channeling. It is

therefore important to use a numerical scheme that will ensure a numerical di�usion

term (which behaves much in the same way as physical di�usion) that is small |

preferably on the order of the physical di�usion that is expected at the local grid

block level| so as not to mask the true physics of the displacement.
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6.3 The One-Dimensional Solution(s)

The use of streamtubes to model �rst-contact miscible displacements in heteroge-

neous systems requires a one-dimensional solution. For �rst-contact miscible 
ow,

the governing one-dimensional PDE is easily derived from Eq. 6.3 as

�
@Ci

@t
+ u

@Ci

@x
� �

@

@x
Ki

@Ci

@x
= 0 : (6:7)

Using the usual de�nitions of dimensionless time, distance, and concentration assum-

ing two components only, and a spatially constant Ki gives the familiar convection-

di�usion equation
@CD

@tD
+
@CD

@xD
=

1

NPe

@2CD

@x2
D

: (6:8)

Eq. 6.8 is linear. The nonlinearity of the problem is accounted for by the coe�cients in

the governing PDE for the streamfunction that include the concentration-dependent

viscosity
@

@x

 
�(CD)

ky

@	

@x

!
+

@

@y

 
�(CD)

kx

@	

@y

!
= 0 : (6:9)

Thus, as the spatial concentration distribution changes, the coe�cients of Eq. 6.9

change resulting in new streamtubes.

Unlike the two-phase immiscible problem, the �rst-contact miscible case has a

subtle one-dimensional solution. For example, the no-di�usion form of Eq. 6.8 is

given by
@CD

@tD
+
@CD

@xD
= 0 : (6:10)

Eq. 6.10 is of hyperbolic type (Zauderer 1989) and can be solved using initial data of

the type (Riemann conditions)

CD(xD; 0)

8<
: CDl for xD � 0

CDr for xD � 0
; (6:11)

giving the well-known indi�erent wave solution traveling at unit velocity (see Fig. 4.3).

For favorable mobility ratios, the `physical' solution is indeed a wave traveling at

unit velocity, although the wave is no longer indi�erent but self-sharpening. For

unfavorable mobility ratios, on the other hand, the solution to Eq. 6.10 is misleading
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because it still gives a piston-like displacement, when the system is in fact unstable.

The problem, of course, is that the displacement model given by Eq. 6.10 is unable to

distinguish between stable and unstable displacements since it is linear; by not having

concentration dependent coe�cients, the solution cannot account for any viscosity

induced mobility contrast as a function of xD and tD. Furthermore, Eq. 6.10 has no

characteristic length scale, resulting in a sharp, but unstable front at all length scales

and for all times. A physically meaningful solution, on the other hand, would require

some cut-o� length scale across which the frontal instability is mitigated.

Adding a cut-o� length scale can be done mathematically by retaining the second

order di�usion term in Eq. 6.8. That implies that the cut-o� length scale is now

given by the di�usive length scale associated with NPe. It is important to note

that Eq. 6.7, by its very derivation, has no way of modeling any other instability

mitigation phenomena. In particular, there is no convective induced mixing beyond

the pore scale that can be accounted for.

It is unlikely that at the �eld scale molecular di�usion and pore level mixing are

�rst-order type physical processes that a�ect recovery. Convective mixing at the

macroscale, such as viscous �ngering and channeling are probably more important.

To account for such phenomena in an averaged, one-dimensional sense, an analogy to

two-phase 
ow was �rst proposed by Koval (1963). In the Koval model, straight line

relative permeabilities and a quarter-power mixing rule are combined to de�ne a 
ux

function f(CD) that models convective mixing of the 
uids. The governing PDE for

Koval's model is2

@CD

@tD
+
@f (CD)

@xD
= 0 ; (6:12)

where f (CD) is given by

f (CD) =
1

1 + 1�CD
CD

1

Me�

: (6:13)

Me� is the e�ective mobility ratio de�ned as

Me� =
�
0:78 + 0:22M 1=4

�4
; (6:14)

2Koval's original model also includes a heterogeneity factor H. This factor is set to H = 1
(homogeneous) for all Koval solutions presented in this dissertation, since the model is used only to
capture viscous �ngering in an averaged one-dimensional sense along streamtubes.
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and M = �o=�s is the usual de�nition of the mobility ratio.

A criticism of Koval's model is that he validated his model against experimental

data by Blackwell et al. (1959), thereby lumping di�usive e�ects into the convective


ux function. On the other hand, overall recovery from viscous �ngering experiments

has been shown to be remarkably insensitive to Npe. In fact, Koval's method for ho-

mogeneous domains is surprisingly robust and has lead other investigators to propose

similar models (Dougherty 1963, Todd and Longsta� 1972, Fayers 1988) .

For combining with streamtubes though, a better one-dimensional model to use is

the Todd{Longsta� formulation. The Todd{Longsta� model includes Koval's model

as a special case and is a single parameter function (not including M ) given by

f(CD) =
1

1 + 1�CD
CD

�
1

M

�1�! : (6:15)

By choosing ! as

! = 1� 4
ln
�
0:78 + 0:22M 1=4

�
lnM

(6:16)

the Todd{Longsta� model is equivalent to Koval's model. Setting ! = 1 gives the

piston-like, no-di�usion solution, while ! = 0 returns the `equivalent' two-phase prob-

lem using straight line relative permeabilities. Varying ! therefore allows investigation

of an entire range of possible solutions for the unstable case. Example fractional 
ow

functions and concentration pro�les for an end-point mobility ratio of ten are shown

in Fig. 6.1. What value of ! to choose for generating a one-dimensional solution to

use along streamtubes is discussed in Section 6.6.

6.3.1 Scale of 1D Solutions

Three one-dimensional solutions exist for the �rst-contact miscible case that may be

mapped onto streamtubes: (1) a no-di�usion, piston-like solution, (2) a convection-

di�usion solution, and (3) a viscous �ngering solution. Of these three solutions,

only two are really physically meaningful (2 and 3), each one emphasizing a di�erent


uid 
ow mechanism to mitigate the inherent instabilities for unfavorable mobility

ratio displacements. The CD-solution models `mixing' at a scale at which the 
ow is
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Figure 6.1: Fractional 
ow curves and corresponding velocity pro�les forM = 10 and
di�erent values of ! in the Todd{Longsta� model.

assumed Fickian, while the viscous �ngering model attempts to capture the average

linear growth of viscous �ngers in two dimensions. Which one-dimensional solution

is used along streamtubes will make an implicit statement about the physical scale

of the resulting two-dimensional solution.

The discussion on tracer displacements in Section 4.4.2 already discussed the dif-

fusive length scale introduced by the convection-di�usion model. Choosing a Peclet

number introduces a representative length scale, Lrep, beyond which the systems is

said to be di�usive at the sub-streamtube level. On the other hand, if a viscous

�ngering model is used along streamtubes, such as the Todd{Longsta� model, then

the scaling argument no longer rests on a di�usive length scale3, and a representative

length scale must be extracted from the viscous �ngering model itself and the physics

it is attempting to capture. The most convincing physical argument for attaching a

length scale to the two-dimensional streamtube solution is to consider each stream-

tube as a `homogeneous' medium that will attain a Fickian limit in the unit mobility

ratio case, but will generate viscous �ngers for M > 1.

3Although it is possible to argue that the size of viscous �ngers may be scaled by Lrep.
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6.4 2D Solutions With No Di�usion

Considerable e�ort has gone into trying to reduce the di�usive length scale asso-

ciated with numerical solutions of unstable miscible displacements by using higher

order numerical methods, a large number of grid-blocks (Christie 1989, Christie and

Bond 1987), and alternative numerical techniques such as particle tracking (Arak-

tingi and Orr 1993, Tchelepi 1994,). Mapping the no-di�usion analytical solution

along streamtubes is therefore particularly appealing, since it would represent a com-

pletely di�usion-free, two-dimensional, unstable solution. Although such di�usion-

free solutions can be found, they are unstable at all length scales, amplifying the

assumptions inherent in the Riemann approach. It is easy to see that mapping a

one-dimensional solution along streamtubes that is unstable at all length scales must

necessarily lead to a similarly unstable two-dimensional solution. By not allowing

any di�usive mechanism, the initial instability given by the end-point mobility ratio

is preserved throughout the life of the displacement. As a result, moving the solution

forward in time may result in large changes in the streamtube geometries, even for

small time steps (t + �t). For example, a permeability �eld that would normally

give rise to a viscous �ngering 
ow regime (see Fig. 6.2) will generate streamtubes

that alternate between a `very narrow' and 'very fat' state. This may be an extreme

example, particularly given the fact that the streamtube approach by its very nature

of conforming to the reservoir heterogeneity is not suited for modeling `pure' viscous

�ngering since it can never capture the mechanisms of shielding, spreading, and tip

splitting (Homsy 1987). Nevertheless, it explains why the `�ngers' in the streamtube

solution of Fig. 6.2 are so narrow (basically one or two grid blocks in width) followed

by a swept-out region. The Mistress �nite di�erence solution, on the other hand,

clearly indicates extensive �ngering.

As the permeability �eld becomes more correlated (Fig. 6.3-Fig. 6.4), the instabil-

ity in the streamtube solution is accentuated. Channels rapidly change direction and

size and appear and disappear until some dominant 
ow path to the outlet boundary

is found. At this point, all the 
ow is diverted into this (usually one) preferential
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Figure 6.2: Evolution of a 2D, M=10, no-di�usion solution in a 250x100 block per-

meability �eld with short correlation length. (PERM 5 | � = 0:01, �lnk = 0:5,
HI = 0:0025)
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Figure 6.3: Evolution of a 2D, M=10, no-di�usion solution in a 250x100 block

permeability �eld with intermediate correlation length. (PERM 2 | � = 0:25,
�ln k = 0:5,HI = 0:0625)
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Figure 6.4: Evolution of a 2D, M=10, no-di�usion solution in a 250x100 block per-

meability �eld with long correlation length. (PERM 8 | � = 1:00, �ln k = 0:5,HI =
0:25)
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Figure 6.5: Evolution of a 2D, M=10, no-di�usion solution in a 250x100 block

permeability �eld with intermediate correlation length. (PERM 4 | � = 0:5,
�ln k = 1:0,HI = 0:50)
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ow path, causing the fronts to retract in many of the other channels, giving the im-

pression of `backwards' 
ow. Although visible to a certain extent in Fig. 6.2-Fig. 6.4,

the instability of the solution is best demonstrated in an animated version of the dis-

placement. The recovery curves for the di�erent displacements, shown in Fig. 6.6, are

particularly interesting. Given the completely unstable nature of the displacements,

overall recoveries are remarkably good and breakthrough is predicted correctly in all

cases. The reason for this must be that the �rst-order e�ect due to the underlying

heterogeneity structure is still captured by the streamtubes.

Possibly the `best' solution in the no-di�usion case can be obtained for systems

in which the correlation length is on the same order, or greater, of the system length

(�c > L); the least resistant 
ow path is found immediately and the competition

between several streamtubes never materializes. The problem with systems of this

type is that the large channel(s) could now be considered homogeneous systems in

their own right, giving rise to a viscous �ngering dominated 
ow regime within them.

Fig. 6.4 shows just that. The streamtube solution correctly identi�es the preferential


ow path, but the �nite di�erence solution does display viscous �ngering within the

channel.

The examples in this section demonstrate that mapping a piston-like, M > 1

solution along the streamtubes results in unstable two-dimensional solutions. All the

solutions were for an end-point mobility ratio of ten (M = 10). Choosing M < 10

would certainly give better behaved solution (in the limit of M = 1 the no-di�usion

tracer solution is obtained), whereas choosing M > 10 would make things worse. As

with the one-dimensional solution, the problem is that there is no characteristic length

scale on which to mitigate the instability, causing streamtubes to abruptly change in

size and direction. Streamtubes are able to �nd dominant 
ow channels, if they exist,

and are even able to return a particularly good match of breakthrough. Nevertheless,

it is evident that, in general, the solutions will be unstable and nonphysical.
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Figure 6.6: Recovery curves for the displacements shown in Fig. 6.2 - Fig. 6.4.
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6.5 2D Solutions Using the CD-Equation

Mapping the approximate solution to the convection-di�usion equation using semi-

in�nite boundary conditions, given by

C(xD; tD) =
1

2
erfc

0
@xD � tD

2
q

NPe

tD

1
A ; (6:17)

introduces a mixing zone that grows proportionally to the square root of time. In

other words, the frontal instability is mitigated as the concentration varies smoothly

from CD = 1 to CD = 0 across a zone of length �xD which grows proportionally

to
p
tD. In case of unit mobility ratio displacements, Eq. 6.17 makes an implicit

assumption about the probable scale of system: each streamtube is assumed to have a

Fickian limit given by the particular choice of the Peclet number, Pe. For unfavorable

mobility ratios, on the other hand, that same streamtube should give rise to viscous

�ngering dominated 
ow regime. Thus, mapping a CD-solution along streamtubes

for M > 1 would be a contradiction or force a di�erent scale on the solution.

The principal idea to be investigated here though, is whether longitudinal di�u-

sion can be a su�ciently strong mechanism to mitigate the initial mobility contrast.

In particular, this implies that physical di�usion can prevent the growth of viscous

�ngers. For di�usion to have such an e�ect the scale of the system can no longer be

the same one as it was for unit mobility ratio case, but must necessarily be smaller

so as to emphasize the mechanical mixing action at the REV-scale. Just how much

physical di�usion is necessary to mitigate the initial instability is di�cult to quantify,

since it will depend strongly on the extent of heterogeneity. Furthermore, simply

comparing snapshots at particular times may be misleading. A series of still images

that look `right' may display instabilities if viewed as an animated sequence. As an

example, Fig. 6.7 shows concentration maps at tD = 0:3 for Pe = 10; 50, and 200

as compared to the reference Mistress solution with no physical di�usion (but with

numerical di�usion) for a 250x100 block permeability �eld with a correlation length

of �c = 0:3 and �ln k = 1:0. Fig. 6.8 shows the corresponding recovery curves. Map-

ping a convection-di�usion solution along the streamtubes introduces a mixing zone

across which the instability is mitigated, but it does not alter the main features of
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Figure 6.7: Comparison of concentration maps at tD = 0:3 for di�erent values of Pe
in a 250x100 block permeability �eld. The reference Mistress solution for the same

time is given as well. The Mistress solution has no physical di�usion added to it.
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the displacement, which remain dictated by the underlying permeability �eld. This

is summarized by the recovery curves of Fig. 6.8, which show a weak dependence

of overall recovery on Pe. In fact, breakthrough time is practically independent of

Pe, suggesting that it is a convective, permeability-dominated phenomenon. This

result relaxes to a certain extent the constraint on the scale of the system imposed

by mapping a CD-solution for an M > 1 displacement, and thus it is possible that

the concentration maps in Fig. 6.7 apply on a �eld scale as well.

A slight discrepancy exists on what the `correct' value of Pe should be for the

streamtube solution: a visual comparison of the concentration maps in Fig. 6.7 point

to a value closer to 200, whereas the recovery curves of Fig. 6.8 suggest a value

between 10-50. The reason for this discrepancy must be that the streamtube solution

does not capture the viscous �ngering details of the Mistress solution. The only

way to account for the additional recovery given by viscous �ngering and the derived

mobility reduction, is to increase the physical di�usion in the overall streamtube

solution. Example displacements for Pe = 50 and Pe = 200 are given in Fig. 6.9-

Fig. 6.10. The di�erence in the streamtube solution is in fact negligible.

Many more runs would be necessary to cover thoroughly the relevant parameter

space given by M , Pe, � and �. Three additional example solutions for M = 10 and

HI = 0:0625; 0:25 are shown in Fig. 6.11 { Fig. 6.13, which also give the Mistress

reference solutions4. The recovery curves for the four cases are reported in Fig. 6.14.

The solutions presented in this section demonstrate that by adding su�cient physical

di�usion it is possible to mitigate the initial instability and obtain meaningful phys-

ical solutions. The �rst-order features of the displacements though, which were also

seen in the no-di�usion solutions, remain unchanged and are dictated by reservoir

heterogeneity. The argument for not using the CD-solution in the case of unstable

displacements is probably still valid although less restrictive due to the second-order

e�ect of di�usion on displacement performance.

4As a comparison, the equivalent no-di�usion solutions are given in Figs. 6.3 and 6.4.
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Figure 6.9: Evolution of a 2D, M = 10, Pe = 50 CD-solution in a 250x100 block

permeability �eld with intermediate correlation length (PERM BP| �c = 0.3, �lnk =
1:0, HI = 0:3).
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Figure 6.10: Evolution of a 2D, M = 10, Pe = 200 CD-solution in a 250x100 block

permeability �eld with intermediate correlation length (PERM BP| �c = 0.3, �lnk =
1:0, HI = 0:3).
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Figure 6.11: Evolution of a 2D, M = 10, Pe = 200 CD-solution in a 250x100 block

permeability �eld with intermediate correlation length (PERM 2 | � = 0:25, �lnk =
0:5,HI = 0:0625).
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Figure 6.12: Evolution of a 2D, M = 10, Pe = 200 CD-solution in a 250x100 block

permeability �eld with long correlation length (PERM 8| � = 1:00, �ln k = 0:5,HI =
0:25).
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Figure 6.13: Evolution of a 2D, M = 10, Pe = 200 CD-solution in a 250x100

block permeability �eld with intermediate correlation length but with larger vari-

ance. (PERM 9 | � = 0:25, �ln k = 1:0,HI = 0:25).
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Figure 6.14: Recovery curves for the displacements shown in Fig. 6.9 - Fig. 6.13.
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6.6 2D Solutions Using Viscous Fingering Model

If the streamtubes are considered to be on a �eld scale, then a one-dimensional viscous

�ngering solution is probably more appropriate than the convection-di�usion solution

to capture the �rst contact miscible displacement of the resident oil. In other words,

each streamtube is considered large enough and homogeneous enough to reach a

Fickian limit for M = 1 and to generate a viscous �ngering 
ow regime for M > 1.

The e�ective `mixing' zone now grows linearly with time, allowing the instability to

be mitigated even more than in the convection-di�usion approach.

In generating a two-dimensional solutions using the Todd{Longsta� model, a value

for ! must be chosen. An ! � 2=3 is widely used and has been found to match both,

experimental and numerical displacements through homogeneous media (Todd and

Longsta� 1972, Fayers et al. 1992). If the Todd{Longsta� model is made to match

Koval's model then ! becomes a (weak) function of end-point mobility ratio as given

by Eq. 6.16, since Koval's model assumes a �xed solvent concentration of 0.22 to �nd

the mixture viscosity using the quarter power mixing rule. It is unreasonable to be-

lieve that a constant value for ! is able to match all secondary miscible displacements

in homogeneous media, and therefore some functional dependence on M is probably

desired. On the other hand, given the physical limits of ! = 1 (no mixing) and ! = 0

(complete mixing), the large uncertainties in the input data, and the general nonlin-

earity of the problem, it is unlikely that a dependence of ! on M can actually be

detected with the desired degree of accuracy by numerical or laboratory experiments.

To quantify the sensitivity of the streamtube solution on !, the same M = 10

displacement through a 125x50 block heterogeneous system was simulated using in-

cremental values of !, starting from ! = 0 up to ! = 1, with �! = 0:1. Example

concentration maps at tD = 0:3 are shown in Fig. 6.15 and the recovery curves are

shown in Fig. 6.16. The particularly interesting feature of the recovery curves is that

they are not monotonic as a function of !. Recovery increases starting from ! = 0,

reaches a maximum at around ! = 0:6 - 0:7, and then decreases again as it tends to

! = 1:0. It is di�cult to make any general statements about why recovery reaches a

maximum in the range of ! = 0:6 - 0:7, and particularly if it is simply a coincidence
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Figure 6.15: Example concentration maps for ! = 0 (complete mixing), ! = 0:725,
and ! = 1 (no mixing) at tD = 0:3 and M = 10. The Mistress solution is shown at

the bottom.
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Figure 6.16: Recovery curves for increasing values of ! showing the non-monotonic
change in recovery.

that the widely accepted value of ! = 2=3 falls within this range. Many more runs

for a wide range of permeability �elds and mobility ratios would be necessary. On

the other hand, from the solutions presented so far and particularly from the discus-

sion on the no-di�usion case, it is possible to argue that both, ! = 0 and ! = 1,

cannot possibly give the maximum recovery. ! = 0 represents complete mixing, with

the one-dimensional solution given by the `equivalent' two-phase formulation using

straight line relative permeabilities. As a result, a long rarefaction wave with the

maximum concentration velocity given by M and the minimum velocity given by

1=M causes a poor sweep of each streamtube. ! = 1, on the other hand is equivalent

to the no-di�usion solution, emphasizing the least resistant 
ow paths and returning

an nonphysical solution due to the absence of any di�usive length scale. Between

these two extreme cases then, an !max must exists that mitigates the instability by

allowing some mixing while at the same time retaining su�cient frontal character to

ensure a `good' sweep. That !max is closer to 1 than to 0 could be explained by the

fact that mixing is less important in de�ning the overall character of the solution
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than the heterogeneity of the system. In other words, mixing must be introduced

mainly as an instability mitigator. In fact, the stronger the heterogeneity, the more

the displacement would look like the no-di�usion solution; displacements dominated

strongly by heterogeneity would become rather insensitive to the higher values of !

with possibly all values between 0:6 and 1:0 giving more or less the same recovery.

Fig. 6.17 - Fig. 6.22 show example M = 10 solutions through 250x100 block

reservoirs with varying degree of heterogeneity. A value of ! = 0:725 is used in each

case (equivalent to Koval's model) to capture the `viscous �ngering induced mixing'

along each streamtube. The comparison with the Mistress solution in each case raises

the interesting question whether the streamtube solutions and the Mistress solutions

are indeed on the same scale. All Mistress solutions have some viscous �ngering

features, whereas all the �ngering in the streamtube solutions is assumed to take

place within the streamtubes and captured in an averaged one-dimensional sense. As

a result, it could be argued that the streamtube solution is probably representing a

larger scale than the Mistress solution.

The recoveries for the displacements shown in Fig. 6.17 - Fig. 6.20 are summarized

in Fig. 6.23. The recovery for the very short correlation length system is expected

to be good, since it amounts to the recovery predicted by the one-dimensional Koval

solution. For the other cases, the recovery curves tell an interesting story, particularly

for theHI = 0:0625 (PERM 2) andHI = 0:64 (PERM 3) heterogeneity distributions.

The HI = 0:0625 permeability �eld has a correlation length of �c = 0:25, but only a

standard deviation of �ln k = 0:5. In other words, the system is only mildly heteroge-

neous, and although there are preferential 
ow channels, the streamtube solution see

a rather homogeneous reservoir, whereas the Mistress solution allows �ngers to grow

along these channels (Fig. 6.19). The predicted recoveries are accordingly higher

for the more homogeneous streamtube solution and lower for the viscous �ngering

dominated Mistress solution. The interesting point about this displacement is that

it identi�es a 
ow regime in which the streamtube model fails to capture the domi-

nant displacement mechanism: �eld scale �ngering induced by a mildly heterogeneous

systems.

The much more heterogeneous HI = 0:64 case (Fig. 6.22), on the other hand,
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Figure 6.17: Displacement history for a M = 10 displacement using Koval's model

along streamtubes in a 250x100 block heterogeneous reservoir with very short corre-

lation length (PERM 5 | � = 0:01, �ln k = 0:5, HI = 0:0025).
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Figure 6.18: Displacement history for a M = 10 displacement using Koval's model

along streamtubes in a 250x100 block heterogeneous reservoir with intermediate cor-

relation length (PERM BP | � = 0:3, �ln k = 1,HI = 0:3).
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Figure 6.19: Displacement history for a M = 10 displacement using Koval's model

along streamtubes in a 250x100 block heterogeneous reservoir with intermediate cor-

relation length (PERM 2 | � = 0:25, �ln k = 0:5,HI = 0:0625).
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Figure 6.20: Displacement history for a M = 10 displacement using Koval's model

along streamtubes in a 250x100 block heterogeneous reservoir with long correlation

length (PERM 8 | � = 1:00, �ln k = 0:5,HI = 0:25).



chapter 6 �rst-contact miscible displacements 116

 

 

STREAM

 

 

TD=0.2

 

 

TD=0.3

 

 

TD=0.4

 

 

TD=0.5

 

 

TD=0.6

 

 

MISTRESS

 

 

TD=0.2

 

 

TD=0.3

 

 

TD=0.4

 

 

TD=0.5

 

 

TD=0.6

Figure 6.21: Displacement history for a M = 10 displacement using Koval's model

along streamtubes in a 250x100 block heterogeneous reservoir with long correlation

length (PERM 9 | � = 0:25, �ln k = 1:0,HI = 0:25).
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Figure 6.22: Displacement history for a M = 10 displacement using Koval's model

along streamtubes in a 250x100 block heterogeneous reservoir with long correlation

length (PERM 3 | � = 0:25, �ln k = 1:6,HI = 0:64).
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Figure 6.23: Recovery curves for the displacements shown in Fig. 6.17 - Fig. 6.22.



chapter 6 �rst-contact miscible displacements 119

behaves quite di�erently. Heterogeneity is clearly the dominating factor in this dis-

placement, which the streamtube model is able to capture. Mistress also resolves the

heterogeneity, but the many �ngers, channels, and numerical di�usion cause su�-

cient `mixing' to lower the mobility contrast and lead to a substantially higher overall

recovery. It is likely that transverse numerical di�usion is signi�cant in this displace-

ment as well. Compared to the streamtube solution, the 
ow channels in the Mistress

solution are thicker, and they coalesce leading to higher recoveries. Mistress also had

some numerical di�culties with this particular �eld due to the extreme permeability

contrasts. As a result, run time exceeded 14000 Cray seconds, which was set as a limit

for all the other cases, and resulted in the truncated recovery curve5. In the remaining

cases, the streamtube and Mistress recoveries match, demonstrating the ability of the

streamtube approach to capture overall recovery and the main displacement features.

6.7 Convergence

As was mentioned in Chapter 5, the streamtube approach does not have the equivalent

of a CFL condition: there is no numerical limitation to the size of the time step,

and the solution is always numerically stable. Instead, the question of whether the

solution has converged must be addressed explicitly through the number of times

the streamtubes are updated to capture the nonlinearity in the total velocity �eld.

A solution is considered converged when the overall recovery does not change with

increasing number of updates over a �xed total time tD.

All the solutions presented in this chapter implicitly used `su�cient' updates for

a converged solution. Fig. 6.24 shows overall recoveries as a function of mobility

ratio and number of streamtube updates for the same 250x100 permeability �eld

used in Fig. 6.18. In both cases, M = 5 and M = 10, the solution can be considered

converged by using between 40 and 100 streamtube updates over two pore volumes

injected. In fact, the big di�erence in recovery occurs by going from a single solve

(tracer case) to 10 updates. Even by using only 20 updates an acceptable solution

5This case actually exhibits some backward 
ow (vertical �nger growing from the second �nger at
the top to the main 
ow channel). This is also the reason for the vertical streaks in the streamtube
solution.
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Figure 6.24: Example of the convergence of the 2D solution for the �rst-contact
miscible case for end-point mobility ratios of 5 and 10 over two pore volumes injected.
The permeability �eld is 125x100 blocks.

can be obtained, with breakthrough predicted correctly. The speed-up,compared

to the many thousands of pressure solves required by Mistres, is by two to three

orders of magnitude. Herein lies the great advantage of the streamtube approach.

Although it makes strong assumptions in generating the two-dimensional solutions

and does not capture the subtleties of viscous �ngering, it is nevertheless able to

�nd solutions that contain all the main features imposed by the heterogeneity and

return accurate overall recoveries, particularly breakthrough times, using orders of

magnitude fewer matrix inversions than a traditional �nite di�erence or �nite element

approach. A particularly good example is given by the strongly heterogeneous case

discussed previously and shown in Fig. 6.22. Mistress required 14,400 Cray seconds

to reach approximately tD = 1. The streamtube solution, on the other hand, used

100 streamtube updates, which translates to approximately 100 Cray seconds and a

speed-up by a factor of 144. A good answer could have been found using fewer solves,

as Fig. 6.24 indicates. Using just 20 solves the speed-up would be by a factor of 720.

The recovery curves in Fig. 6.24 are for a permeability �eld with an intermediate

correlation length (�c = 0:3). Fig. 6.25 shows how the number of updates varies
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Figure 6.25: Number of streamtube updates required for convergence of M = 10
displacements as a function of heterogeneity of the permeability �elds. Koval's one-

dimensional solution along the streamtubes was used in all cases.
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with correlation length and the variability of the permeability �eld. The correla-

tion length is the more important parameter in setting the number of updates to

reach a converged solution. For short correlation lengths, there are no particular 
ow

paths for the streamtubes to identify. On average, the streamtubes will not see a

major change in their geometry or direction and the recovery is matched because of

the one-dimensional viscous �ngering model along each streamtube. As the correla-

tion length increases, 
ow paths are created leading to more dramatic changes in the

streamtube geometries. Streamtubes in the high permeability zones will progressively

become thinner whereas streamtubes in the low permeability zones progressively be-

come thicker. In order to capture this progressive change in streamtube geometries,

the streamtubes must be updated more frequently. Nevertheless, in all cases, the

streamtube approach is able to capture overall recoveries requiring approximately

100 solves (or fewer) which represent a speed-up of at least two orders of magnitude

compared to the reference �nite-di�erence solutions presented in this chapter.

6.7.1 The Higgins and Leighton Approach

As in the two-phase immiscible case, an alternative to updating the streamtubes to

capture the nonlinearity of the displacement is to keep the streamtubes �xed and

allocate the 
ow according to the total 
ow resistance of each streamtube. Although

the Higgins and Leighton approach gave reasonably good recovery curves in the im-

miscible case, the error in breakthrough time is expected to be more pronounced for

�rst-contact miscible 
ow due to the stronger nonlinearity of the formulation.

King et al. (1993) modi�ed the Higgins and Leighton's approach and found `boost'

factors for each streamline by calculating the total 
ow resistance as an integration

from the inlet to the isobar located at the tip of the leading �nger, rather than

using the total length of the streamline from inlet to outlet as required in Eq. 5.12.

King et al. realized that at early times the resistance, Ri, would be dominated by

the unswept part of the streamtube, thus underestimating the nonlinearity of the

displacement. The placement of an isobar at the leading �nger is a clever way to

reduce the in
uence of the unswept region on 
ow resistance, but is also an indication

that the approach of Higgins and Leighton will likely fail for displacements that are
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strongly nonlinear. Using the isobar modi�cation may be an alternative though it

clearly has some problems as well. For example, it may be di�cult to pick the `leading'

�nger at early times |in fact, choosing the wrong �nger will cause convergence onto

a wrong solution, because it will force the smallest 
ow resistance on that particular

�nger and allow it to grow the fastest. The problem might be corrected by using an

isobar that is removed from the leading �nger by some appropriate length (although

that in turn raises the question of how much to remove the isobar from the leading

�nger). It is worth noting that the di�culties found by King et al. were anticipated

by Martin et al. (1973), who found that immiscible displacement with favorable

mobility ratios (i.e. piston-like displacements with a mobility di�erence across the

front) could not be predicted as well unfavorable mobility ratio displacement using

�xed streamtubes.

Fig. 6.26 compares recoveries for six di�erent permeability �elds. Except for the

uncorrelated permeability case, the Higgins and Leighton approach falls between the

single-solve and the converged streamtube solution, underestimating the nonlinear-

ity of the displacement, particularly breakthrough. By how much the Higgins and

Leighton approach will, in general, underestimate the nonlinearity of the displacement

though is hard to quantify, because it will depend strongly on the type of correlated

permeability structure. Furthermore, the Higgins and Leighton method must be used

with caution in light of the inevitable error that is introduced when evaluating the


ow resistances using Eq. 5.12, which is likely to become more signi�cant the stronger

the system heterogeneity. A case in point is the recovery curves for strongly hetero-

geneous permeability �eld (PERM 3) in Fig. 6.26. It is likely that that Higgins and

Leighton solution is seeing a substantial error due to the strong heterogeneity of the

system (see Fig. 6.22). Thus, the conclusion drawn for the immiscible case applies

here as well: given that 40 streamtube updates will generally result in a converged

streamtube solution, the small gain in speed o�ered by the Higgins and Leighton

method does not o�set the error in recovery that may result.
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Figure 6.26: Comparison of the streamtube approach proposed here and the Higgins

and Leighton method.
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6.8 Applications

The real power of the streamtube approach lies in its ability to produce solutions

that capture the main features imposed by the underlying permeability �eld while

using orders of magnitude less CPU time than traditional simulation techniques. Its

strength is not in resolving the details of the displacements, although the control on

numerical di�usion may suggest it, but in being able to produce reasonably accurate

recoveries very quickly. As such, it is ideally suited for a statistical approach to reser-

voir forecasting. A large number of statistically identical permeability realizations can

be processed to generate a spread in recovery for a particular combination of reservoir

geology and displacement mechanism. The streamtube approach may also be used as

a �lter: the permeability �elds that returned the maximum and minimum recoveries

can be singled out and used in a much more expensive �nite-di�erence simulation to

con�rm the uncertainty.

The speed of the streamtube approach can be used in many ways, but becomes

particularly appealing when a parameter space of interest includes reservoir hetero-

geneity, in which case many simulations are required to obtain a statistically meaning-

ful answer. An example of a parameter space that has received considerable attention

recently (Tchelepi 1994, Araktingi and Orr 1993, Waggoner et. al 1992, Sorbie et. al

1992) has been in the area of unstable displacements through heterogeneous systems.

In its most simple representation, the parameter space is given by the end-point mo-

bility ratio (instability) and heterogeneity index HI (heterogeneity), although HI is

clearly an incomplete parameter for quantifying the complex geologic structure of a

real reservoir. Nevertheless, HI can give some indication of the degree of heterogene-

ity of the reservoir, particularly if it is used in a statistical sense. A partial sweep

of the parameter space is shown in Fig. 6.27. There are 30 recovery curves for each

of the six M -HI pairs. Mobility ratio increases from left to right and heterogeneity

increases from top to bottom. All underlying permeability �elds have 125x50 grid

blocks.

Fig. 6.27 quanti�es how nonlinearity in the velocity �eld and heterogeneity inter-

act, but does so statistically, rather than using a single recovery for each case. As
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Figure 6.27: 180 recovery curves used in partially sweeping the M -HI parameter

space to determine how nonlinearity and heterogeneity interact.
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a result, the weakness of HI as a parameter is traded for a more convincing spread

in recovery given by the 30 curves for each case. Some interesting observations may

be made from Fig. 6.27: (1) nonlinearity and reservoir heterogeneity interact to cre-

ate a spread in recovery that increases with increasing mobility ratio and increasing

heterogeneity; (2) of the two parameters, heterogeneity is clearly the dominant fac-

tor in establishing recovery, although an increasing mobility ratio causes the spread

between minimum and maximum recovery to increase slightly; (3) the most impor-

tant conclusion to be drawn comes from realizing that the recovery areas partially

overlap from one case to the next. A higher heterogeneity index or mobility ratio

does not automatically lead to lower recoveries compared to a system with lower

heterogeneity or mobility ratio, although on average this conclusion does hold. For

example, an M = 5-HI = 0:86 pair exists that will return a higher recovery then an

M = 10-HI = 0:86 pair.

The 180 recoveries of Fig. 6.28 would have taken a prohibitively long time using

a traditional �nite di�erence approach. Instead, if the streamtube approach is used

as a �lter for the 180 images, the number of solutions required to establish �rmly the

spread in recoveries is just six | two per case | as shown in Fig. 6.28.

6.9 Concluding Remarks

This section demonstrated that the streamtube approach is able to model �rst-contact

miscible displacements in heterogeneous systems using several orders of magnitude

fewer matrix inversions than traditional �nite di�erence solutions. Reservoir hetero-

geneity emerged as the dominant factor in establishing sweep and recovery e�ciency.

Although di�usion or a viscous �ngering model improve on the instabilities inherent

in the Riemann approach, they do not change the �rst-order displacement features

imposed by the underlying permeability �eld. This also holds for all the Mistress

solutions presented as comparisons. Thus, the main conclusion to be drawn from this

chapter is that it may be su�cient to capture the �eld scale reservoir heterogeneity

structure to obtain a good �rst order estimate of recovery, even in strongly nonlin-

ear displacements. The variation in recovery due to a speci�c choice of permeability
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Figure 6.28: Con�rming the spread in recoveries predicted by the streamtube ap-

proach by running Mistress on permeability �elds associated with the maximum and

minimum recoveries for each case predicted by the streamtube approach.
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realization is shown to be substantially larger than the error due to approximations

in the streamtube approach. For �eld scale displacements then, it is preferable to

have the capability of processing many geostatistical images to capture the impact of

reservoir heterogeneity by a method like the streamtube approach, rather than the

capability of accounting for all possible physical phenomena at various scales for a

single reservoir image.



Chapter 7

Compositional Displacements

This chapter applies the streamtube approach to compositional displacements through

heterogeneous reservoirs. One-dimensional compositional solutions are mapped along

streamtubes to model condensing/vaporizing gas displacements. By comparing the

di�usion-free streamtube solutions to �nite di�erence solutions, numerical di�usion

is shown to mitigate substantially and to eliminate completely any mobility contrast.

The streamtube approach is shown to be many orders of magnitude faster than tra-

ditional numerical simulation approaches, while still capturing the �rst order e�ects

on displacement due to reservoir heterogeneity and phase behavior.

7.1 Introduction

Phase equilibrium considerations add a substantial degree of complexity to compo-

sitional displacements compared to two-phase immiscible and �rst-contact miscible

displacements. The local equilibrium assumption requires a 
ash calculation for each

grid block at every time step, while the traditional di�culties associated with nu-

merical di�usion and frontal instabilities remain. Simulations become enormously

expensive and yet may yield less than satisfactory solutions. Compared to the `sim-

ple' physics described by two-phase relative permeabilities in immiscible displace-

ments or the quarter power mixing rule in �rst-contact miscible displacements, phase

equilibrium and its coupling to multiphase 
ow poses daunting numerical di�culties.

Because of the large computation times involved, compositional simulations are often

130
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run on coarse grids and therefore have substantial amounts of numerical di�usion.

It can be di�cult to distinguish whether a particular feature is genuinely part of

the solution and the physics of the problem or whether it is simply an artifact of

the numerical scheme. The problem of numerical di�usion is particularly subtle in

compositional simulation because it interacts with the phase behavior to alter dis-

placement performance, sometimes substantially (Johns et al. 1994, Walsh and Orr

1990, Pande and Orr 1989).

The streamtube approach is a powerful tool for investigating compositional dis-

placements. With a one-dimensional solution known, the two-dimensional solution for

a heterogeneous system can be constructed with the same ease as the tracer, immisci-

ble, or �rst-contact miscible case. Furthermore, because the one-dimensional solution

may be calculated numerically using a large number of grid blocks, or analytically

for some special cases (Johns et al. 1993, Dindoruk et al. 1992, Orr et al. 1993),

numerical di�usion is minimized or even completely absent. Computation times are

reduced dramatically, since beyond the savings resulting from the comparably small

number of streamtube updates required to capture the nonlinear convective part of

the displacement, all the phase behavior is contained within the one-dimensional so-

lution that is mapped along the streamtubes. In other words, the phase behavior is

completely decoupled from the underlying cartesian grid used to solve for the local


ow velocity, and 
ash calculations are no longer necessary for each grid block. The

streamtube approach also has the substantial advantage of being always numerically

stable. Its simple formulation, particularly the decoupling of the phase behavior from

the 
ow �eld, makes for very robust simulations. The only issue, as in in the dis-

placements described in the previous chapters, is the number of times the streamtubes

must be updated to capture the change in the total mobility �eld. The simplicity of

the streamtube approach is in stark contrast to traditional compositional simulation,

which faces signi�cant numerical di�culties, particularly in strongly heterogeneous

systems, where extreme di�erences in local 
ow velocities impose very small time

steps and convergence problems.

The interest in multiphase, compositional displacements is spurred principally

by enhanced oil recovery methods, such as miscible or near miscible gas injection
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processes that can achieve high displacement e�ciencies. For modeling purposes,

the phase behavior of real hydrocarbon systems is simpli�ed by introducing pseudo

components. Pseudo components are created by lumping together components with

`similar' properties in a way that the original phase behavior of the system can be

reproduced. For example, Newley and Merrill (1991) suggest lumping components

with similar K-values at some `appropriate' feed composition. Using this technique,

Johns et al. (1993) are able to match successfully a 12-component model using only

four pseudo-components. Reducing the number of components to a manageable size

is important in numerical simulation, since it impacts directly on the time spent per

grid block and time step by the 
ash routine in calculating equilibrium compositions

of the phases. On the other hand, as with all pseudo properties, undesired numerical

artifacts may arise, particularly at conditions further away from the ones used to

calibrate the model.

The key mechanism to achieve better oil recoveries exploited in high pressure

gas injection methods is mass transfer between the highly mobile gas phase and the

resident oil phase1. If the main recovery mechanism is the partitioning of the oil com-

ponents into the gas phase, the displacement is said to be vaporizing. Conversely,

if the gas components partition into the oil phase, the displacement is said to be

condensing (Stalkup 1983). Both, vaporizing and condensing mechanisms, lead to

better sweep e�ciencies by moving towards miscibility, although the gain in recovery

is partly o�set by increased viscous instability that can lead to �ngering and chan-

neling. A vaporizing mechanism can also increase oil recovery by transporting oil

components through the more mobile gas phase to the production well. Displace-

ments that are vaporizing and/or condensing can lead to multicontact miscibility

(MCM) by repeated mass transfer between the phases. Although the injected gas

phase and the resident oil phase may not be miscible at �rst, as the displacement

takes place, repeated vaporization of the volatile oil components into the gas phase

or condensation of injected components into the oil phase can lead to a miscible

1In real reservoirs, particularly reservoirs that have been previously water
ooded, a third, aqueous
phase is generally present as well, thereby considerably complicating the 
ow aspect since three-phase
relative permeabilities are required. All the work presented here assumes only two, non-aqueous

owing phases to be present.
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displacement. Multicontact miscibility is usually illustrated using a pseudoternary

system (Stalkup 1983). The key condition for achieving multicontact miscibility is

that the initial oil composition and the injected gas composition lie on opposite sides

of the critical tie-line extension. In a ternary system, a MCM displacement can be

classi�ed as vaporizing or condensing depending on the position of the initial and

injected compositions: if the injected gas composition is in the area of tie-line exten-

sions, the displacement will be vaporizing. However, if the oil composition is in the

area of tie line extensions then the displacement will be condensing.

Ternary representations allow explanation of vaporizing or condensing gas drives

only. Yet experimental observations of enriched gas 
oods (Stalkup 1965) show that

displacements may be both condensing and vaporizing at the same time (Zick 1986,

Stalkup 1987, Lee et al. 1988). The leading edge of the displacement may show

condensation of components into the oil phase, while the trailing edge may show

vaporization of components into the gas phase. Depending on initial and injected

compositions of the oil and gas phase as well as pressure and temperature of the

reservoir, a displacement may therefore be purely vaporizing, purely condensing, or

both. If the displacement has vaporizing as well as condensing characteristics, a

pseudoternary system is no longer able to capture this type of behavior. In order to

model a combined vaporizing/ condensing displacement a minimum of four pseudo

components is necessary (Zick 1986, Johns et. al. 1992).

7.2 One-Dimensional Solutions

As for all displacement mechanisms discussed in the preceding chapters, applying the

streamtube technique to model compositional displacements in heterogeneous systems

centers on the availability of a one-dimensional solution. Substantial progress on

analytical solutions has been reported recently (Johns et al. 1993, Dindoruk et al.

1992, Orr et al. 1993, Johns 1992, Dindoruk 1992, Monroe et al. 1990, Monroe 1986),

and analytical solutions have been presented for multicomponent problems that have

constant initial and injected conditions (Riemann conditions) with either no volume

change on mixing (Johns et al. 1993, Johns 1992) or volume change on mixing
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(Dindoruk et al. 1992, Dindoruk 1992). For an extensive treatment on the subject

the reader is referred to the dissertations of Johns (1992) and Dindoruk (1992). The

key results presented by Johns, Dindoruk, and Orr include a method to construct two-

phase, multicomponent solutions without having to resort to a systematic elimination

technique, the existence of nc � 1 key tie lines (nc � 3 of which are called crossover

tie lines), and the classi�cation of the displacement according to the volatility of its

individual components (K-values).

The starting point for the analytical solutions is the i = 1; � � � ; nc one-dimensional,
mass balance equations given by (Lake 1989, p.29)
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Assuming (1) no di�usion/dispersion and (2) de�ning the fractional 
ow of phase j

as

fj =
uj

ut
; (7:2)

where ut is simply the total Darcy velocity, gives the governing material balance

equations as
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Eq. 7.3 are nc coupled, �rst order hyperbolic equations. In fact, only nc � 1 need to

be solved since the normalized overall compositions zi

zi =

PNP

j=1 �jSj!ijPNP

j=1 �jSj
(7:4)

add-up to one, i.e.
ncX
i

zi = 1 : (7:5)

If there is no volume change on mixing, then the phase density �j is a function of the

phase composition and the pure component (constant) densities �ci and given by

�j =
1P
nc

i

xij

�ci

: (7:6)

In this case, the total velocity ut is constant and the equations can be simpli�ed by
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expressing them in terms of volumetric concentrations. If there is volume change on

mixing, then the volume of the mixture is no longer a linear function of the phase

compositions; the phase density �j must be found through an equation of state model

and ut will no longer be constant (Dindoruk 1992).

The solution to Eq. 7.3 subject to Riemann boundary conditions will be composed

of shocks, constant states, and rarefaction waves. Shocks are introduced when the

continuous solution to Eq. 7.3 is nonphysical, as in the case of multivaluedness, for

example. Constant states are necessary to connect shocks and rarefaction waves into

a continuous solution and occur when a path switching point in composition space has

two velocities associated with it. Finally, rarefaction waves are simply genuine smooth

continuous solutions to Eq. 7.3. The key in constructing the unique solution for a

particular set of Riemann conditions centers on imposing (1) the velocity constraint

and (2) the entropy condition on the multiple, mathematically possible solutions

(Johns 1992, Dindoruk 1992).

Analytical solutions are invaluable. They are the reference solutions against which

to compare numerical solutions, and allow a rigorous analysis of the physics at play,

as the extensive discussions on vaporizing and condensing gas drives by Johns et al.

(1993), Dindoruk et al. (1992), and Orr el al. (1992) demonstrate. Nevertheless, all

one-dimensional solutions used here were obtained numerically. The reason for this

was to guarantee consistency in the phase behavior representation between the one-

dimensional solutions used along the streamtubes and the two-dimensional `reference'

solutions found using the same compositional simulator in 2D. In other words, the

two-dimensional compositional solutions used for comparing the streamtube solutions

were obtained by simply increasing the number of blocks in the second dimension and

specifying the heterogeneous permeability �eld, while leaving the PVT data section

untouched.

7.3 Reservoir Heterogeneity and Phase Behavior

A key issue in multiphase, multicomponent 
ow through heterogeneous porous me-

dia revolves around the question of how phase behavior and reservoir heterogeneity
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interact to de�ne the displacement of resident hydrocarbons. Although several inves-

tigators have studied the problem, many questions remain, particularly with regard

to conclusions drawn from numerical simulations due to the insu�cient number of

grid blocks generally used in the published studies.

The most convincing results on how phase behavior and heterogeneity interact,

albeit on a microscopic scale, come from 
ow-visualization experiments (Campbell

and Orr 1985, Bahralolom et al. 1988). Bahralolom et al. (1988) show the existence

of a relatively high residual oil saturation in preferential 
ow paths of a CO2/crude-oil

displacements. They point out that although three di�erent mechanisms {transverse

dispersion, viscous cross
ow, and capillary cross
ow{ may have contributed to creat-

ing this type of residual saturation, capillary cross
ow is the most likely mechanism

responsible for their observations. They are also quick to point out that their exper-

iments are not to scale: pores are an order of magnitude larger than those in actual

rocks and the 
ow velocity is also larger than what would be observed on a �eld scale.

Nevertheless, the results are substantial in that they directly link higher residual oil

saturations to the heterogeneity of the system. Thus, preferential 
ow paths not only

cause early breakthrough, but may also cause an increased residual saturation.

Similar behavior was predicted by Gardner and Ypma (1984) by numerical sim-

ulations of CO2 core
oods. They noticed that residual oil saturations increased in

zones where pure CO2 �ngers had �rst displaced the resident oil and attributed this

phenomenon to the combined action of transverse dispersion and viscous cross
ow.

The numerical simulations of Gardner and Ypma were for mildly heterogeneous sys-

tems on 100x10 and 40x10 grids, and all permeability �elds were uncorrelated. The

phase behavior of a CO2/Wasson crude system was represented using two pseudo

components, and the phase viscosities were computed using a quarter-power mixing

rule. The results by Gardner and Ypma are important, but are also symptomatic of

the di�culties associated with extracting information from numerical simulations of

compositional displacements. The small number of blocks in the vertical direction,

the uncorrelated permeability �eld, the two pseudo-component phase behavior, and

the quarter-power mixing rule for the phase viscosities introduce errors and assump-

tions that may substantially `contaminate' the �nal answer. As a result, it becomes
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extremely di�cult to give any conclusive answer as to how phase behavior and hetero-

geneity may interact, and to what extent their results were due to numerical artifacts.

A more recent attempt to numerically study CO2 displacements, this time on

a �eld scale, has been by Chang et al. (1994). Chang et al. simulated the dis-

placement of a three-component characterization of a Maljamar separator oil by pure

CO2 at 1200 psi and 90�F through a variety of di�erent heterogeneous systems.

With their simulator's third-order �nite di�erence scheme as justi�cation, Chang et

al. used a relatively coarse 80x20 mesh for their simulations. In light of this, their

main conclusion |that viscous �ngering is not a dominant 
ow pattern in �eld-scale

CO2 displacements| is questionable. The study by Chang et al. again underlines

the inherent di�culties in extracting meaningful physical insight from compositional

simulations; although channeling and gravity override may in fact be dominant dis-

placement mechanisms on a �eld scale (as Chang et al. suggest) the large number of

degrees of freedom introduced by the phase behavior description (number of pseudo

components, equation of state model, viscosity correlations, etc...) and reservoir het-

erogeneity, coupled with the well-known di�culties introduced by numerical di�usion

and uncertainties in the relative two and three-phase 
ow properties combine to give

a highly nonlinear, uncertain problem formulation from which it is almost impossible

to conclude that viscous �ngering is not important on a �eld scale.

Given the di�culties associated with compositional simulations, one of the cen-

tral issues of this chapter is to try to understand how `good' �nite di�erence solu-

tions really are, and what they may be expressing about the interaction of phase

behavior and reservoir heterogeneity. The strategy is to combine the accurate one-

dimensional, multiphase, multicomponent solutions with the simple streamtube for-

mulation and compare the resulting two-dimensional solution to full, two-dimensional

�nite-di�erence solutions. In particular, because the streamtube solutions do not ac-

count for transverse mixing mechanisms, have no numerical di�usion, and emphasize

the system heterogeneity, the hope is that by comparing them to �nite di�erence so-

lutions something can be inferred about the relative importance of these mechanisms.



chapter 7 compositional displacements 138

7.4 UTCOMP - A Finite Di�erence Simulator

UTCOMP (Version 3.2, 1993) is an IMPES-type, isothermal, three-dimensional, com-

positional simulator developed at the University of Texas at Austin. The formulation

of UTCOMP is described by Chang (1990) and Chang et al. (1990). A rigorous

Gibbs stability test is done before all 
ash calculations to determine the number of

phases. Nonaqueous 
uid properties can be modeled using either the Peng-Robinson

or Redlich-Kwong equation of state. Phase viscosities are found using the Lohrenz-

Bray-Clark correlation (Lohrenz et al. 1964). A particularly nice feature of UTCOMP

is the possibility of controlling numerical di�usion by specifying the numerical scheme

for generating the system of linear equations. Single-point upstream weighting and

a third order, total variation diminishing (TVD) scheme were used here to study the

impact of numerical di�usion on the solutions.

7.5 Three-Component Solution

An example of a high volatility intermediate (HVI) ternary system is given by CH4

/CO2/C10 at 1600 psia and 160�F (Johns 1992, p. 122). The name `high volatility

intermediate' refers to the strict ordering of the K-values for all compositions and

the fact that the intermediate component K-value is greater than one (KCO2 > 1)2.

This means that CO2 will preferentially reside in the more mobile gas phase. A

HVI-system can give rise to either a condensing or vaporizing drive depending on the

initial and injected compositions. The displacement of a 30/70 CH4=C10 oil by pure

CO2, for example, is a condensing gas drive.

The CH4=CO2=C10 system shown will not develop MCM since the injection and

initial compositions are both in the region of tie line extensions.

The one-dimensional solution shown was found by Johns (1992) using the Peng-

Robinson equation of state (Peng and Robinson 1976), the Lohrenz-Bray-Clark cor-

relation for the phase viscosities (Lohrenz et al. 1964), and Corey-type relative

2In other words, KCH4
> KCO2

> 1 while KC10
< 1. If all K-values were greater than one,

KCH4
> KCO2

> KC10
> 1, the system would be �rst-contact miscible.
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Component Mw Pc Tc Vc !

(psia) (�F) (ft3=lb-mol)
CO2 44.01 1071.0 87.90 1.5060 0.2250
CH4 16.04 667.8 -116.63 1.5899 0.0104
C10 142.29 305.7 652.10 9.6610 0.4900

Component Interaction Parameters
CO2 CH4 C10

CO2 0.0000 0.1000 0.0942
CH4 | 0.0000 0.0420
C10 | | 0.0000

Table 7.1: Component properties for the three-component model.

permeabilities with an exponent of 2 and a residual oil saturation of Sor = 0:2:

krg = S2
g
; kro = (1 � Sor � Sg)

2. Pressure and temperature were 1600 psia and

160�F respectively. Component properties as shown in Table 7.1. The composition

pro�les in Finding the one-dimensional composition pro�les is the �rst step in con-

structing a two-dimensional compositional solution for a heterogeneous system using

streamtubes. In addition though, the one-dimensional pro�le for the total mobility

is required as well. In the two-phase, immiscible problem and in the �rst-contact

miscible case, �nding the total mobility for each grid block was a simple function of

the block saturation/concentration. In compositional 
ow �nding the total mobility

is complicated by the fact that the phase viscosities are functions of composition.

For the purposes of this work, UTCOMP , which also uses the Lohrenz-Bray-Clark

correlation, was simply modi�ed to output total mobility as well. Example numerical

solutions (including the total mobility pro�le) for the CH4=CO2=C10 system, found

using 100 and 500 grid blocks and the third order TVD-option, are shown in Fig. 7.1.

The numerical solutions in Fig. 7.1 are able to capture all the essential shocks in

this condensing gas drive, and particularly the 500-block solution has an acceptable

level of numerical di�usion. The numerical solutions do not have exactly the same

shock speeds as the analytical solution found by Johns (1992), because the residual

oil saturation was set to zero for simplicity, and the solutions account for volume
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Figure 7.1: UTCOMP one-dimensional numerical solution, using 100 and 500 grid

blocks and a third order TVD-scheme to control numerical di�usion, for the

CH4=CO2=C10 condensing gas drive.
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change on mixing, whereas Johns used a value of 0.2 for the residual oil saturation

and did not account for volume change. For streamtube modeling purposes, the

total mobility pro�le is possibly the most important piece of information, because it

indicates the strength of the nonlinearity of the total 
ow velocity and directly ties

into the solution of the streamtubes. For this particular case, although the end-point

mobility ratio is approximately 8, the mobility ratios across the two fronts, which are

separated by a long rarefaction wave, are approximately 3 and 2. In other words,

the mobility contrast is reduced considerably by the phase behavior alone. To what

extent numerical di�usion may a�ect total mobility is already anticipated by the

disappearance of the leading mobility front due to numerical di�usion in the 100 grid

block solution.

An almost di�usion-free compositional solution through a heterogeneous domain

can now be found by mapping the 500 grid block, TVD solution along streamtubes.

Composition and saturation maps for a 125x50 block heterogeneous reservoir3 at

tD = 0:3 and tD = 0:5 are shown in Fig. 7.2. As expected, the fronts are clearly

visible and, although the end-point mobility ratio is M � 8, the displacement does

not su�er from the `instabilities' seen in the no-di�usion solutions of Chapter 6. The

reason for the stability, of course, is that the phase behavior mitigates the initial

mobility ratio contrast by creating two `weaker' fronts which are separated by a long

rarefaction wave. As in Chapter 6, it is important to remember that all the scaling

arguments brought forward there apply here as well. In other words, the 500 grid

block numerical solution used along the streamtubes has a very small di�usive length

scale, and although the two resulting fronts have smaller mobility ratios than the

original end-point mobility ratio, they remain unstable and can be thought of in the

same way as the no-di�usion, unit velocity wave solution in the ideal miscible case for

M > 1. Technically then, the instability across the two fronts, even if small, would

require some form of mitigation, possibly using a viscous �ngering model as suggested

by Blunt et al. (1994).

Figs. 7.3 and 7.4 compare the two-dimensional UTCOMP solution found using a

3The permeability �eld used in this example is an upscaled version of the 250x100 permeability
�eld used in Fig. 4.1, Fig. 6.7, and Fig. 6.15. The upscaling was done by simply taking a geometric
average of 2x2 grid blocks.
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Figure 7.2: Two-dimensional, 3 component condensing gas drive in a 125x50 hetero-

geneous block reservoir at tD = 0:3 and tD = 0:5. The one-dimensional solution is
shown in Fig. 7.1.
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Figure 7.3: Comparison of the streamtube solution with the UTCOMP solution at
tD = 0:4. The UTCOMP solution was found using a third-order TVD scheme.



chapter 7 compositional displacements 144

 

 

STREAM - 1D with 500 Blocks and TVD

 

 

TD = 0.2

 

 

TD = 0.3

 

 

TD = 0.4

 

 

TD = 0.5

 

 

TD = 0.6

 

 

UTCOMP - 1 Point Upstream

 

 

TD = 0.2

 

 

TD = 0.3

 

 

TD = 0.4

 

 

TD = 0.5

 

 

TD = 0.6

Figure 7.4: Comparison of the evolution in time of the gas saturation. The stream-

tube solution was found using a 500 grid block one-dimensional solution, while the

UTCOMP solution was found using a third-order TVD scheme.
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third-order TVD scheme to the streamtube solution; Fig. 7.3 compares composition

and saturation pro�les at tD = 0:4, whereas Fig. 7.4 compares only the gas saturation

pro�les from tD = 0:1 to tD = 0:6. The agreement is very good, particularly consid-

ering that UTCOMP required approximately 5000 Cray seconds per 0.1PV injected,

whereas the streamtube solution required approximately 2-3 Cray seconds, a speed-

up factor of more than three orders of magnitude. Both solutions clearly capture

the same overall 
ow characteristics imposed by the underlying heterogeneity �eld.

Figs. 7.3 and 7.4 are encouraging, because they suggest that the streamtubes can

be combined successfully with a one-dimensional compositional solution to model a

two-dimensional displacement at a signi�cantly reduced cost, with the error intro-

duced by the Riemann approach remaining `small' thereby not signi�cantly altering

the displacement mechanism.

Nevertheless, although the comparison is good and the streamtube solution looks

like a `sharper' UTCOMP solution, a noticeable di�erence is the more stable behav-

ior of the UTCOMP solution in which the leading front has not penetrated as far

as in the streamtube solution. This di�erence raises an important question: is the

stability in the �nite di�erence solution an artifact due to numerical di�usion or a

genuine physical phenomenon, possibly resulting from mixing due to viscous cross-


ow? Considering that the number of blocks in the main direction of 
ow is only

125, and that a TVD-scheme in 2D does not result in the same numerical di�usion

control as in 1D, it is possible that numerical di�usion is the main reason for the more

stable looking UTCOMP solution. Two additional simulations were performed in an

attempt to answer this question: (1) a UTCOMP solution was found for the same

125x50 grid but using a one-point upstream scheme to show the e�ects of numerical

di�usion more clearly, and (2) a di�used one-dimensional compositional solution was

mapped along the streamtubes in an attempt to include numerical di�usion in the

streamtube solution4.

4A simulation with a re�ned 250x100 grid and a third-order TVD scheme, while maintaining the
same heterogeneity structure, was attempted using UTCOMP as well. Unfortunately, computation
costs approached 70,000 Cray seconds (� 20hr) per 0.1 PV injected, forcing the simulation to be
aborted.
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(1) - 125x50 1Pt Upstream Solution

Fig. 7.5 compares the UTCOMP one-point upstream weighting solution to the stream-

tube solution. The degradation in the UTCOMP solution is noticeable compared to

the TVD solution: the fronts are more di�used, the solution now looks more stable,

and breakthrough occurs later still than in the TVD solution. Fig. 7.5 suggests that

the mitigation of the original mobility contrast in UTCOMP solutions is likely due to

numerical di�usion rather than to cross
ow.

(2) - Di�used Streamtube Solution

The comparison of UTCOMP solutions with TVD and single-point upstream weighting

suggest that the frontal instability is mitigated substantially by numerical di�usion.

To corroborate this, it should be possible to �nd a `di�used' one-dimensional solution

along the streamtubes that would lead to a solution similar to the one obtained us-

ing �nite di�erences. The one-dimensional solution used in the streamtube solution

was obtained using 500 grid blocks and a third-order TVD scheme, which produced

a solution with relatively sharp fronts. But given the fact that only 125 blocks are

present in the main direction of 
ow and that a TVD scheme in two-dimensions does

not necessarily have the same numerical di�usion control as it does in one dimension5,

a one-dimensional solution using 100 grid blocks and single point upstream weighting

was mapped along the streamtubes. A di�culty associated with mapping a `di�used'

one-dimensional solution is that the solution is no longer scalable by xD=tD, as is

shown in Fig. 7.6. There are 10 curves in Fig. 7.6, each representing a solution at

time increments of �tD = 0:1 starting from tD = 0:1. The solution clearly tends to

`sharpen-up' with time, although even at tD = 1:0, the solution is still su�ering from

numerical di�usion. To capture the time dependence of the di�used, one-dimensional

solution in Fig. 7.6, the solution was mapped along the streamtube for the corre-

sponding time interval: the �rst curve was used in the streamtube simulator to �nd

solutions in the range of tD = 0:0 and tD = 0:1, the second curve for solutions between

tD = 0:1 and tD = 0:2, and so on. Although this approach is only a rough attempt to

5In general, any method that is TVD in two dimensions will be at most �rst order accurate,
although the accuracy can be increased to second order if Strang splitting is used (LeVeque 1992).
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Figure 7.5: Comparison of the evolution in time of the gas saturation. The streamtube
solution was found using a 500 grid block one-dimensional solution while the UTCOMP

solution was found using a single-point upstream weighting scheme.
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Figure 7.6: Ten one-dimensional UTCOMP solutions using 100 grid blocks and one

point upstream weighting. Each solution represent an increment of �tD = 0:1.
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include longitudinal `numerical'-type di�usion into the streamtube solution, it does

mitigate the mobility contrast.

Fig. 7.7 shows a comparison of the UTCOMP and the streamtube saturation maps.

The streamtube displacement is indeed more stable than the one found using a 500

grid block, 1D solution (compare with Fig. 7.4), and it is apparent from this com-

parison that by adding `numerical di�usion' to the streamtube solution, the �nite

di�erence solution can be approximated. It is important to realize that the di�used

one-dimensional solution mapped along the streamtubes can, at best, approximate

longitudinal numerical di�usion only. Clearly, the UTCOMP solution will also have

some transverse di�usion, which cannot be accounted for in the streamtube solution.

Transverse numerical di�usion would slow down the leading shock velocities and lead

to a more stable displacement.

Fig. 7.8 shows a summary of the gas saturation maps for the various cases discussed

previously. Two key issues are summarized in Fig. 7.8: (1) longitudinal and transverse

numerical di�usion combine with phase behavior to mitigate substantially the original

instability of the displacement and (2) the streamtube solution with the sharp, 500

grid block solution may in fact be considered as the limiting no-di�usion solution

to the three-component problem. The large di�erence in computation times, 3000-

10000 Cray seconds per 0.1 PV injected depending on numerical scheme and grid

size for UTCOMP as opposed to 2-3 Cray seconds for the streamtube solution makes

the streamtube solution very attractive, despite the underlying Riemann assumption

used in mapping the one-dimensional solutions along the streamtubes. Fig. 7.8 is

interesting because it shows how numerical di�usion is able to mitigate the instability

of the displacement. It is likely that both UTCOMP solutions in Fig. 7.8 are not

converged solutions; grid re�nement and time-step reduction would likely reveal a

stronger instability.

Cumulative recoveries for the three-component problem are shown in Fig. 7.9,

which quanti�es the more stable displacement seen by UTCOMP . It is interesting

to note that the di�erence in recovery due to the di�erent one-dimensional solutions

used along the streamtubes | 500 grid blocks and TVD versus 100 grid blocks and

one-point upstream | is negligible. The one-dimensional recovery is shown as well
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Figure 7.7: Comparison of the evolution in time of the gas saturation. The streamtube
solution was found using single point upstream, 100 grid block, 1D solutions while

the UTCOMP solution was found using a third-order TVD scheme on a 125x50 grid.



chapter 7 compositional displacements 151

 

 

UTCOMP - 1 Pt. Upstream, 125x50

 

 

UTCOMP - TVD, 125x50

 

 

STREAM - 1D, 100 Blocks, 1Pt Upstream

 

 

STREAM - 1D, 500 Blocks, TVD

Figure 7.8: Summary of gas saturation maps at tD = 0:5: From top to bottom:

UTCOMP solution with single-point upstream weighting, UTCOMP solution third

order TVD scheme, streamtube solution using a 1D, 100 blocks, single-point upstream

solution, and streamtube solution using a 1D, 500 grid block-TVD solution.
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Figure 7.9: Recovery curves for the CO2=CH4=C10 system.

as a way to quantify the impact on recovery due to heterogeneity and a nonlinear

velocity �eld. Fig. 7.10 shows the convergence of the streamtube solution. Forty

streamtubes updates are su�cient to capture the �rst order e�ect imposed by reservoir

heterogeneity on recovery, and, as expected, the UTCOMP recovery falls between the

streamtube solutions using a single solve and ten solves.

Fig. 7.11 shows the same three-component, two-phase displacement through a

less heterogeneous system. The permeability �eld is an upscaled version (125x50) of

the same permeability �eld used for the displacements shown in Fig. 6.20 (� = 1:00,

�ln k = 0:5,HI = 0:25). The interesting feature of Fig. 7.11 is that while the UTCOMP

single-point upstream solution shows no viscous �ngering whatsoever, the same solu-

tion using a third-order TVD scheme is able to retain su�cient mobility contrast to

result in some �ngering in the channel demonstrating again that numerical di�usion

can have a substantial impact on 
ow behavior and supress �ngering. The streamtube

solution, of course, is not able to reproduce any viscous �ngering, but captures the

main 
ow path and the �rst order e�ect of heterogeneity on the displacement at a
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Figure 7.10: Convergence for the CO2=CH4=C10 system, showing that overall recovery
can be predicted using fewer than 40 streamtube updates over 2 PVinj .

much lower computational cost.

7.6 Four-Component Solution

The three-component system presented in the previous section was characterized by

a condensing displacement mechanism. In this section, the displacement of a three-

component oil |CH4, C6, C16| by an enriched gas, composed of a mixture of CH4

and C3, at 2000 psia and 200�F is used as an example of a displacement exhibiting

condensing behavior at the leading edge and vaporizing behavior at the trailing edge.

The example is taken from Johns (1992, p. 194) and is discussed in detail there.

Component properties are shown in Table 7.2. The initial composition of the oil in

mole fractions is CH4 = 0:2, C6 = 0:4, C16 = 0:4 and the injected composition of

the enriched gas is CH4 = 0:65 and C3 = 0:35. The injected conditions are close to

the minimum enrichment composition for miscibility (CH4 = 0:615 and C3 = 0:385),
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Figure 7.11: CH4=CO2=C10 displacement in a mildly heterogeneous system (compare

with Fig. 6.20) showing the suppression of viscous �ngers due to numerical di�usion.
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Component Mw Pc Tc Vc !

(psia) �F (ft3=lb-mol)
CH4 16.04 667.8 -116.63 1.5899 0.0104
C3 44.087 615.8 205.85 3.2534 0.1530
C6 86.18 430.6 453.63 5.9299 0.2990
C16 226.448 205.7 830.91 15.000 0.7420

Component Interaction Parameters
CH4 C3 C6 C16

CH4 0.0000 0.0000 0.0250 0.0350
C3 | 0.0000 0.0100 0.0100
C6 | | 0.0000 0.0000
C16 | | | 0.0000

Table 7.2: Component properties for the four-component model.

characterizing the system as near-miscible (Johns 1992).

Fig. 7.12 shows the numerical one-dimensional solutions obtained from UTCOMP

using 100 and 500 grid blocks and a third-order TVD scheme to control numerical

di�usion. Unlike the three-component solution, UTCOMP has some problems in re-

solving the one-dimensional solution for this case. Numerical di�culties are evident

in the di�used fronts as well as in the `dip' in the total mobility pro�le. Nevertheless,

the 500 grid block solution does seem to capture the main feature of the displacement

and sees the condition of near miscibility: the main part of the two-phase region is

small and the the total mobility pro�le shows a substantial mobility contrast across

the two-phase region. Again, the mobility pro�le is the main indicator of the insta-

bility that will control the streamtube solution. For this case, the initial mobility

contrast is M � 8:4, but unlike the three-component solution which had a similar

end-point mobility ratio, the main two fronts are much closer to each other and lead

to a mobility contrast of M � 6. Thus, the four-component streamtube solution is

expected to be more unstable than the three-component solution discussed previously.

Fig. 7.13 shows the component and saturation maps for tD = 0:2 and tD =

0:45 obtained by mapping the 500 grid block TVD-solution along streamtubes. The

stronger instability compared to the previous three-component solution is evident,
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Figure 7.12: One-dimensional numerical solution, using 100 and 500 grid blocks and

a third-order TVD scheme to control numerical di�usion, for the CH4=C3=C6=C16-

condensing/vaporizing gas drive.
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Figure 7.13: Two-dimensional streamtube solutions at tD = 0:2 and tD = 0:45 for the
CH4=C3=C6=C16 displacement using the 500 grid block 1D solution shown in Fig. 7.12.
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with break-through occurring well before tD = 0:45. That the streamtube solution

sees a much stronger instability is also demonstrated by Fig. 7.14 and Fig. 7.15, which

show comparisons to TVD solutions from UTCOMP . As in the three-component

case, the central question that arises from comparing the streamtube solutions to

the UTCOMP solutions is whether the much more stable displacement simulated by

UTCOMP is a result of numerical di�usion or is, indeed, a genuine physical feature of

the displacement mechanism. The impact of numerical di�usion is again illustrated

by using single-point upstream weighting in UTCOMP and a di�used one-dimensional

solution along the streamtubes6.

A comparison of UTCOMP saturation maps (single-point upstream weighting vs.

third-order TVD) is shown in Fig. 7.16. The TVD-solution shows a noticeable im-

provement in the resolution of the leading shock compared to the single-point up-

stream solution, indicating again that numerical di�usion is substantially a�ecting

the displacement. But the surprising feature of the comparison is that although the

TVD-solution shows a marked improvement, the displacement remains rather stable,

and the positions of the leading fronts are very similar. Clearly, the mitigating e�ect

longitudinal and transverse di�usion have on the displacement by `feeding' back into

the phase behavior of the system is not o�set by the improved numerical resolution

of the third-order TVD-scheme. This raises an important issue regarding numerical

di�usion control in compositional models: because numerical di�usion interacts with

the phase behavior of the system, doubling the number of cells and/or using an im-

proved numerical scheme may not show the same improvement as it would for ideal

miscible or immiscible displacement. It also follows that increasing the `complexity'

of the phase behavior description will decrease the e�ciency in controlling numeri-

cal di�usion. For example, the improvement of the TVD-solution compared to the

single-point upstream solution in the four component case is not nearly as good as

the improvement seen in the three-component case (see Fig. 7.4 and Fig. 7.5). The

more serious implication of this discussion is that the UTCOMP solutions are not con-

verged, but rather represent intermediate solutions in a possible re�nement sequence

6As in the three component case, a simulation using a re�ned 250x100 grid with UTCOMP was
attempted, but led to prohibitively high computation costs and had to be terminated.
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Figure 7.14: Composition and saturation maps for the CH4=C3=C6=C16 displacement
at tD = 0:35. The UTCOMP solution was found using a third order TVD scheme,

while the streamtube solution used the 1D, 500 grid block TVD solution.
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Figure 7.15: Saturation maps for the CH4=C3=C6=C16 displacement at various times.
The UTCOMP solution was found using a third order TVD scheme, while the stream-

tube solution used the 1D, 500 grid block TVD solution.
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Figure 7.16: UTCOMP saturation maps for the CH4=C3=C6=C16 displacement at vari-
ous times. The UTCOMP solutions were found using single-point upstream weighting

and a third order TVD scheme.
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that would ultimately show a displacement with substantial frontal instability, and

possibly viscous �ngering, and indeed much closer to the solution returned by the

streamtube approach.

How signi�cant numerical di�usion can be in reducing the inherent instability of

the displacement is revealed by Fig. 7.17, which compares a `di�used' streamtube

solution to the UTCOMP (TVD) solution. The key issue in Fig. 7.17 is that the

streamtube solution was generated using a 1D, 100 grid block, single-point upstream

solution, but assuming a unit mobility ratio displacement (M = 1). In other words,

the streamtubes were calculated only once, as in in the tracer case, and used to de-

scribe the velocity �eld for the entire duration of the displacement. What led to

this was the discovery that even the most di�used mobility pro�le in the longitudi-

nal direction would still return a displacement that looked more unstable than the

equivalent UTCOMP solution. Thus, the entire mobility contrast was removed.

Using a one-dimensional solution devoid of any mobility contrast to match the

UTCOMP solution has substantial implications. In particular, it suggest that numer-

ical di�usion and phase behavior can combine to completely eliminate the original

instability of a displacement in a heterogeneous system. Needless to say, the speed-

up is now by four to �ve orders of magnitude, since the streamtube solution uses a

single matrix inversion versus the many thousand pressure solves and 
ash calcula-

tions required by UTCOMP . The most dramatic conclusion to be drawn from the

three- and four-component solutions is that two-dimensional compositional solutions,

particularly those generated on coarse grids and with a simple single-point upstream

weighting scheme are not likely to be converged solutions, and will predict optimistic

recoveries.

Recoveries for various number of streamtube updates are shown in Fig. 7.18. All

recoveries were obtained using the 500 grid block TVD solution (Fig. 7.12) along the

streamtubes. As in the three-component solution, 40 updates over 2 pore volumes

injected are su�cient to give a converged solution. Unfortunately, UTCOMP could

not be run long enough to yield recovery after breakthrough due to the enormous

computation time involved. Nevertheless, it is possible to argue, given the previous
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Figure 7.17: Saturation maps for the two-dimensional UTCOMP and streamtube

solutions for the CH4=C3=C6=C16 displacement. In this example, the streamtube

solution was found by using a 100 grid block, 1D solution andM = 1. The UTCOMP

solution is the same as shown in Fig. 7.16.
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Figure 7.18: Streamtube recovery curves for the CH4=C3=C6=C16 system. A 500 grid
block TVD solution (Fig. 7.12) was used along the streamtubes.

discussion and the comparisons of the concentration maps, that the UTCOMP recov-

ery is likely to be bound by the streamtube recoveries found using 1 solve and 10

solves.

7.7 Numerical Di�usion vs. Cross
ow

The previous section identi�ed numerical di�usion as having a substantial impact on

compositional displacements. To what extent cross
ow may a�ect the displacement

performance in a similar manner is an ongoing debate (Fayers 1994, Fayers 1994b,

Pande 1992, Pande and Orr 1989), although all authors agree that cross
ow aids

overall recovery. Viscous cross
ow is attributed to transverse pressure gradients that

result from mobility di�erences.

Many questions remain though, particularly given the fact that numerical di�u-

sion is usually not addressed explicitly in simulation studies that investigate viscous
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cross
ow. The di�culty is that cross
ow, if it is present, will be subject to numerical

di�usion as well. Separating the contribution of each mechanism therefore may be

extremely di�cult, if not impossible, because both manifest themselves in the same

way: reduction of the mobility contrast by mixing. The examples of the previous

sections are strong evidence that numerical di�usion | even when using an e�cient

third-order TVD scheme | can substantially reduce the mobility contrast. That

raises the question whether the improved recovery reported by many authors and

attributed to cross
ow is in fact a combined e�ect of cross
ow and numerical di�u-

sion or even just numerical di�usion. For example, Pande (1992) found substantial

improvement in recovery due to cross
ow in a C2=C4=C10 system for several di�erent

types of reservoir heterogeneity. Pande used a fairly coarse 50x30 (x-z) grid, with grid

blocks of size 1 ft x 75 ft, and a single-point upstream weighting scheme. No-cross
ow

solutions were found by setting all vertical permeabilities to Kz = 0:01Kx.
7

Fayers et al. (1994), on the other hand, did not report any cross
ow e�ects

while studying four component displacements through a mildly heterogeneous 128x64

system. Furthermore, comparison of the �ne-grid 128x64 solution to a coarser 64x32

solution showed little evidence that numerical di�usion was a signi�cant factor in

reducing the instability of the displacement. It is likely, instead, that the numerical

di�usion was so dominant as to mask any improvement in resolution between the

two grid sizes, particularly considering that a single-point upstream scheme was used

in all simulations. This interpretation would be in agreement with the three- and

four-component UTCOMP solutions found here.

To consider the issue of numerical di�usion and cross
ow further, this section

uses the condensing/vaporizing four-pseudo-component system proposed by Johns et

al. (1994) and detailed in Table 7.3. The four-component system was derived from

a 12-component oil using the method proposed by Newley and Merrill (1991). The

same four-pseudo-component system was used in the simulation study by Fayers et al.

(1994). The strategy is to again rely on a comparison of the streamtube solution to

the UTCOMP solution to gain a more detailed picture of the displacement mechanisms

7A convincing argument can be made here that by changing the ratio of Kz to Kx e�ectively
generates a new permeability �eld. Thus, the change in recovery could just as well be attributed to
a changing heterogeneity structure, rather than viscous cross
ow.
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Component Mw Pc Tc Vc !

(psia) (�F) (ft3=lb-mol)
CH4N2 16.0 671.17 -117.07 1.585 0.0130
C2+ 41.0 769.81 142.79 2.540 0.1592
C5+ 189.0 322.89 775.00 13.054 0.6736
C30+ 451.0 171.07 1136.59 30.644 1.0259

Component Interaction Parameters
CH4N2 C2+ C5+ C30+

CH4N2 0.0000 0.0286 0.0258 0.2000
C2+ | 0.0000 0.0607 0.1268
C5+ | | 0.0000 0.0000
C30+ | | | 0.0000

Table 7.3: Component properties for the pseudo four-component model (Johns et al.
1992).

at work. The four-pseudo-component system is particularly suitable for looking at

viscous cross
ow due to its very large end-point mobility ratio. The one-dimensional

solution of an enriched CH4N2=C2+-gas 
ood (0.3277/0.6733) displacing the four-

component oil with initial compositions given by CH4N2 = 0:3692, C2+ = 0:1155,

C5+ = 0:4281, and C30+ = 0:0872 at 3150 psia and 200�F is shown in Fig. 7.19. The

total mobility pro�le was rescaled by the mobility of the oil at the initial conditions so

that the y-axis could be used directly to get an indication of the mobility ratio of the

displacement. The end-point mobility ratio is approximately M � 70. The leading

shock has a mobility ratio of M � 10, the intermediate shock has a mobility ratio of

M � 6, and the trailing shock has a mobility ratio of M � 1:1. A permeability �eld

with 60x20 grid blocks and a heterogeneity index of HI = 0:72 (�c = 0:5, �lnK = 1:2)

was chosen, though it is clear that the grid is too coarse to possibly consider any

resulting solution converged. But the opportunity for allowing at least one stage of

re�nement (120x40) that could be run using UTCOMP forced this choice.

A comparison of gas saturation at various times is shown in Fig. 7.20. The per-

meability �eld has a well de�ned main 
ow path that both solutions are able to see,
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Figure 7.19: One-dimensional numerical solution, using 500 grid blocks and a TVD-

scheme for the CH4N2=C2+=C5+=C30+ four-pseudo-component system proposed by

Johns et al. (1994).
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Figure 7.20: UTCOMP and streamtube saturations for the CH4N2/ C2+/ C5+/ C30+

displacement. The one-dimensional solution used along the streamtubes is shown in
Fig. 7.19. The UTCOMP solution was found using a third-order TVD scheme.
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but as in the previous cases, the UTCOMP solution clearly has a more di�used so-

lution, particularly in the transverse direction. The issue then is whether viscous

cross
ow is the source for the mixing around the main 
ow channel or whether it

is mainly numerical (transverse) di�usion. The example in Fig. 7.20 is particularly

suited to help answer this question, because the single 
ow channel carries the high

pressure into reservoir that allows for transverse pressure gradients that drive viscous

cross
ow. Both solutions suggest the presence of transverse pressure gradients by

the thickening of the main 
ow channel as it progresses towards the outlet end. In

fact, the shape of the main 
ow channel is reminiscent of a viscous �nger: thin at

the trailing end, where pressure gradients are pointing into the channel, and thick at

the front where pressure gradients are pointing outwards. It is likely then that the

`mixed' zone around the main 
ow channel in the UTCOMP solution is due to viscous

cross
ow, since it too seems to thicken towards the outlet end.

To quantify how much numerical di�usion is a�ecting the solution, a comparison

of the same displacement using several grid sizes is shown in Fig. 7.21. The 30x10

permeability �eld was found by simply taking a geometric average of 2x2 blocks in the

original 60x20 �eld, whereas the 120x40 permeability �eld was generated by re�ning

each cell into four smaller ones. All solutions clearly show the dominant 
ow channel,

which thickens as it makes its way to the outlet end, suggesting that transverse

pressure gradients are indeed at work. But the 120x40 UTCOMP solution also shows

that numerical di�usion may be signi�cant: the 
ow channel begins to have some

higher gas saturation not visible in the coarser 60x20 grid, and it is possible that

with further grid re�nement numerical di�usion could be controlled further, leading

to a solution closer to the streamtube solution.

Although both, the UTCOMP and streamtube solutions, indicate that transverse

pressure gradients are present and possibly responsible for some mixing due to viscous

cross
ow in the UTCOMP solution, it is not apparent that cross
ow is a dominant

physical phenomenon. The real di�culty lies in the fact that the di�used or mixed

region around the main 
ow channel is a sum of numerical transverse di�usion and

mixing due to cross
ow. Thus, it is di�cult to quantify what the contribution of each

mechanism really is. Given that numerical di�usion has such a mitigating e�ect in
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Figure 7.21: UTCOMP and streamtube saturation for the CH4N2/ C2+/ C5+/ C30+

displacement for three di�erent grids: 30x10, 60x20, 120x40. The one-dimensional
solution used along the streamtubes is shown in Fig. 7.19. The UTCOMP solutions
were found using a third order TVD scheme.

the main 
ow direction it could be argued that it will cause a similiar e�ect in the

transverse direction. But the key point to stress here is that the streamtube solution

is a limiting no-cross
ow solution. If cross
ow is the primary cause for transverse

mixing, then the solution is likely to look more like the UTCOMP solution. On the

other hand, if cross
ow is largely absent, then the UTCOMP solution is probably a

result of transverse numerical di�usion, and the physical solution will be closer to the

streamtube solution.

Unambiguous determination of the relative magnitudes of the e�ects of trans-

verse di�usion and cross
ow will require computations with �ner grids than those

that could be used here. A su�ciently high resolution must be obtainable on the

underlying computational grid so as to minimize any numerical errors and resolve the
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cross
ow adequately. In that case, the impact of mixing due to cross
ow could be

assessed by direct comparison with the streamtube solutions presented here. Thus,

the streamtube technique provides a basis for improved understanding of the e�ects

of cross
ow, given that the current computational cost limits of compositional simu-

lations can be overcome.

7.8 Concluding Remarks

Unlike the previous chapters, the main issue raised here is not whether the stream-

tube approach can model compositional displacements, but rather how good tradi-

tional �nite di�erence solutions to compositional problems really are. The simple

and straightforward streamtube formulation is used to quantify numerical di�usion

and demonstrates that its continuous feed-back into the phase behavior computation

can substantially reduce the mobility contrast in a traditional �nite di�erence for-

mulation. In fact, the combination of numerical di�usion and phase behavior may

be so strong that doubling the number of grid blocks or using third-order numerical

schemes may simply not show substantial improvement in the solution, particularly

in retaining the unstable characteristic of the displacement | in other words, the

same numerical di�usion control that is achieved by doubling the grid blocks in a

�rst-contact miscible displacement may require tripling or quadrupling the number of

grid blocks for a compositional simulation. This type of numerical di�usion control,

while retaining an acceptable level of reservoir description, is currently not possible

with available computational resources. The streamtube approach is a simple and

robust alternative that can solve very large problems without losing the underlying

physics of the displacement to numerical di�usion and return a good approximation

of overall recovery in four to �ve orders of magnitude less time than traditional simu-

lation approaches. The streamtube solution cannot, by de�nition, model mixing due

to viscous cross
ow, and thus represents a no-cross
ow limit. If mixing due to viscous

cross
ow is assumed to be a second-order e�ect, then the streamtube solution is a

reasonable approximation to the true solution of a compositional displacement.



Chapter 8

Summary and Conclusions

The main ideas and conclusions discussed in this dissertation are summarized, and

the limitations of the streamtube approach are reviewed.

8.1 Summary

The underlying assumption in applying the streamtube method to describe multi-

phase, multicomponent 
ow in heterogeneous porous media is that �eld scale dis-

placements are dominated by reservoir heterogeneity and convective forces. Flow

paths are captured by streamtubes, the geometry of which re
ects the distribution

of high and low 
ow regions in the reservoir. Each streamtube is treated as a one-

dimensional system along which solutions to mass conservation equations for di�er-

ent displacement mechanisms can be mapped. The streamtube approach e�ectively

decouples the `channeling' imposed by the reservoir heterogeneity from the actual

displacement mechanism taking place. In other words, regardless of the displacement

type, the assumption is that there are prede�ned 
ow paths that will dominate the

two-dimensional solution. The 
uid velocity along these 
ow paths is re
ected by the

geometry of the streamtubes, and the inherent nonlinearity in the underlying velocity

�eld is captured by periodically updating the streamtubes.

One-dimensional solutions are mapped along the streamtubes using a `Riemann

approach' | each streamtube is treated as a true one-dimensional system with con-

stant initial and injected conditions, allowing to time-step by integrating from tD = 0

172
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to tD = tD + �tD. This approach allows analytical and numerical solutions to hy-

perbolic conservation equations (found using Riemann boundary conditions) to be

mapped along periodically updated streamtubes. The reason for using the Riemann

approach is to avoid di�culties associated with general-type initial conditions along

streamtubes, in which case solutions could be found only numerically for each time

step by either using a �nite-di�erence approach or a front-tracking type approach.

General-type initial conditions along streamtubes arise by updating the streamtubes

while keeping the spatial saturation/concentration/composition distribution �xed.

Initializing each new streamtube in this way produces initial conditions that are

problem speci�c and of general-type.

Solutions for (1) tracer 
ow, (2) two-phase immiscible 
ow, (3) �rst-contact misci-

ble 
ow, and (4) two-phase, multicomponent 
ow are found for a multitude of hetero-

geneous systems. For tracer 
ow the streamtubes are �xed in time and the Riemann

approach is equivalent to time stepping from tD to tD+�tD. The only assumption in

�nding two-dimensional solutions involves neglecting transverse di�usion/dispersion

mechanisms. In the limit of a piston-like front, a di�usion-free two-dimensional solu-

tion is found that can be used to quantify the error introduced by numerical di�usion

in traditional simulation methods. Longitudinal physical di�usion can be added ex-

plicitly by mapping a CD-solution for a given Peclet number along streamtubes. Using

the CD-solution is also an example of representing two di�erent scales of reservoir

heterogeneity: the large-scale heterogeneity captured by the geometry of the stream-

tubes and a smaller scale heterogeneity within each streamtube quanti�ed indirectly

by the Peclet number. The di�usive length scale associated with the choice of the

Peclet number also allows scaling of the two-dimensional solution.

In the two-phase immiscible case the velocity �eld becomes a function of satu-

ration and the streamtubes are updated periodically as the 
ood progresses. The

Riemann approach is used to map the Buckley-Leverett solution along streamtubes.

Evidence is presented to show that the error due to the Riemann approach is less than

the error introduced by numerical di�usion in a traditional �nite di�erence solution.

The key result, though, is the convergence of the streamtube approach with orders of

magnitude fewer matrix inversions (velocity �eld updates) than traditional solutions.
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Only a few streamtube updates (less than 20 over 2 pore volumes injected) are nec-

essary to predict overall recovery correctly. The speed of the streamtube approach is

put to use by processing 60 geostatistical images to demonstrate the interaction of

nonlinearity and reservoir heterogeneity.

Applying the streamtube approach to �rst-contact miscible 
ow raises the chal-

lenging question of the `correct' one-dimensional solution to be used. Scaling ar-

guments are used to suggest that streamtubes that gave rise to a Fickian limit for

M = 1 displacements (tracer 
ow) should now see a viscous �ngering 
ow regime for

unstable M > 1 �rst-contact displacements. Thus, a Todd{Longsta� model is used

to capture the sub-streamtube viscous �ngering regime. Solutions are found using

a piston-like one-dimensional solution and a CD-solution along streamtubes as well,

although these solutions cannot be reconciled with the scale of the M = 1 solution.

The streamtube method is again able to predict recoveries using orders (2-3) of mag-

nitude less computation time than traditional simulation approaches. To demonstrate

the power of this approach, 180 recoveries are found to show how nonlinearity and

reservoir heterogeneity interact to de�ne the uncertainty in overall recovery, and the

usefulness of the streamtube approach as a fast �lter is pointed out. Only perme-

ability �elds returning maximum and minimum overall recoveries in the streamtube

approach need to be used to con�rm the spread in recovery using an expensive �nite

di�erence/�nite element simulation.

For compositional displacements the streamtube approach is shown to be partic-

ularly powerful due to its simplicity, robustness, and speed. The streamtube method

is used to assess how good traditional numerical solutions to compositional displace-

ments really are, particularly in view of interactions of numerical di�usion interacting

with phase behavior calculations. The key result is the demonstration that numerical

di�usion can substantially if not completely eliminate any mobility contrast in �nite

di�erence solutions. Streamtube solutions can be made to match �nite di�erence so-

lutions by simply using a unit mobility ratio calculation: mapping one-dimensional

composition pro�les along constant streamtubes. The resulting speed-up can range

from 3 to 5 order of magnitude. In traditional �nite di�erence simulation, convergence

of the solution by progressive grid re�nement is very slow, possibly requiring several
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times (2-4) the number of grid re�nements used in FCM displacements to demon-

strate convergence. Finally, because mixing due to viscous cross
ow and transverse

numerical di�usion result in the same e�ect, their individual contribution can not be

quanti�ed readily. The streamtube solution is, by de�nition, a solution that cannot

account for mixing due to viscous cross
ow or transverse di�usion, and thus it repre-

sents a limiting solution where these mechanisms are assumed to have a second-order

e�ect.

8.2 Limitations of the Streamtube Approach

As with all numerical techniques, the streamtube approach discussed in this disser-

tation clearly has its limitations. In part, the limitations are connected to the one-

dimensional solutions used along the streamtube. The Riemann approach to mapping

one-dimensional solutions along periodically updated streamtubes centers on the as-

sumption of constant boundary conditions. If the boundary conditions change with

time, as may happen in an areal domain where wells are shut-in, new wells are in-

troduced, and 
ow rates vary, the Riemann approach may not work. Another key

assumption in the streamtube method is the dominance of the heterogeneity in de-

termining the 
ow response. If the reservoir is only mildly heterogeneous, though,

viscous �ngers, which the streamtube solution would fail to recognize, may actually

dominate the displacement mechanism. The streamtube approach is not able to rep-

resent any transverse 
ow mechanism that leads to mixing explicitly. Thus, transverse

di�usion and mixing due to viscous forces cannot be accounted for. Finally, account-

ing for gravity may not be as straightforward as modeling viscous forces, particularly

in multiphase 
ow, because now the velocity vectors for each phase do not point in

the direction of the total velocity.

8.3 Conclusions

The following main conclusions, in order of importance, are drawn from applying the

streamtube approach to modeling multiphase, multicomponent 
ow:
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Fast, accurate, and robust solutions. The streamtube approach produces fast,

accurate, and robust solutions for displacements that are dominated by reser-

voir heterogeneity. Streamtube geometries capture the impact of heterogeneity

on the 
ow �eld, while the one-dimensional solutions mapped along them re-

tain the essential physics of the displacement mechanism. Speed-up is by two

to three orders of magnitude for two-phase immiscible and �rst-contact miscible

displacements and four to �ve orders for two-phase compositional displacements.

The absence of any convergence criteria and the ability to capture all the es-

sential physics of the displacement (like phase behavior) in the one-dimensional

solution leads to particularly robust solutions.

Statistical reservoir forecasting. The speed of the streamtube approach makes

it an ideal tool for statistical reservoir forecasting: hundreds of geostatistical

images can be processed in a fraction of the time required by traditional reser-

voir simulators. Applications to two-phase immiscible and �rst-contact misci-

ble displacements show a substantial uncertainty in overall recovery due to the

combined e�ects of reservoir heterogeneity and the inherent nonlinearity of the

displacements. As reservoir heterogeneity and nonlinearity increase so does the

uncertainty in overall recovery. The streamtube approach can be used to quan-

tify this uncertainty, which in turn can then be con�rmed by a more expensive

traditional approach using only the two geostatistical images that produces the

maximum and minimum recoveries. Although the streamtube method makes

strong assumptions in generating the two-dimensional solutions, the uncertainty

in recovery due to heterogeneity is shown to be substantially larger than the

error introduced by the Riemann approach.

Weak nonlinearity of 	. For all displacements, the necessary updates of the stream-

tubes to converge onto a solution are shown to be many orders of magnitude less

than the equivalent number of pressure solves in traditional numerical simula-

tion approaches. As a result, updating the streamtubes only periodically (20-40

times per 2 pore volumes injected) and using a one-dimensional solutions that

captures the essential physics of the displacement is su�cient to give accurate
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overall recoveries.

Impact of numerical di�usion on compositional displacements. Numerical dif-

fusion is found to have a signi�cant role in reducing the mobility contrast in

traditional �nite di�erence solutions of compositional displacements. Compar-

ison of streamtube solutions to �nite di�erence solutions it is found that the

original mobility contrast is substantially reduced and even completely elimi-

nated by the presence of numerical di�usion. Streamtube solutions can be made

to match �nite di�erence solutions by simply using a unit mobility ratio pro�le.

Reservoir heterogeneity, phase behavior, and numerical di�usion are found to

be so dominant in compositional displacements that convergence due to pro-

gressive grid re�nement is very slow. Two to four times the re�nement used in

�rst-contact miscible displacements may be necessary in compositional displace-

ments, particularly if a single-point upstream weighting scheme is being used,

to see the equivalent improvement in the solution. As a result, compositional

displacements on coarse grids obtained using a single-point upstream weighting

scheme are not likely to result in converged solutions.

Decoupling of phase behavior from 2D grid. The streamtube approach is par-

ticularly powerful for multiphase compositional displacement. All the phase

behavior is now contained in the one-dimensional solution that is mapped along

the streamtubes, completely decoupling the underlying cartesian grid used to

specify reservoir heterogeneity from phase behavior considerations. This ap-

proach di�ers from traditional approaches to reservoir simulation, which per-

form a 
ash calculation for each grid block at each time step. As a result, the

streamtube approach makes for very robust solutions, particularly in the case

of compositional displacements.

Cross
ow. Because mixing due to viscous cross
ow and transverse numerical di�u-

sion result in the same e�ect, their individual contributions cannot be quanti�ed

readily. The streamtube solution is, by de�nition, a solution that cannot ac-

count for mixing due to viscous cross
ow or transverse di�usion, and thus it

represents a limiting solution where these mechanisms are assumed to have a
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second-order e�ect. The streamtube solutions provide a useful limiting case

against which the impact of cross
ow can be measured.

Di�usion-free solutions. One-dimensional analytical solutions can be mapped along

streamtubes to obtain numerical-di�usion-free solutions. For tracer 
ow, the so-

lution is shown to be exact in the limit of in�nite streamtubes and benchmark

solutions can be generated in two dimensions, which can be used to test numer-

ical schemes.

Scale of 2D solutions. By mapping a convection-di�usion model or a viscous �n-

gering model an implicit assumption about the scale of the two-dimensional

solutions is made in �rst-contact miscible displacements. Sub-streamtube het-

erogeneities are assumed to lead to a Fickian limit for M = 1 displacements,

while giving rise to viscous �ngering 
ow regime for unstable M > 1 displace-

ments. Thus, the streamtube approach is an example of how physical phenom-

ena that take place at di�erent scales can be nested into a single model.



NOMENCLATURE

A area, or coe�cient

Ai cross section of ith streamtube

B coe�cient

C concentration, or coe�cient

CD dimensionless concentration

fw water fractional 
ow

HI heterogeneity index

h separation length of permeability values

i index, x-direction or streamtube; or
p
�1

j index, y-direction
~~Kij di�usion/dispersion of component i in phase j, tensor

K di�usion/dispersion, constant

Km molecular di�usion
~~k absolute permeability, tensor

kx absolute permeability in x-direction

ky absolute permeability in y-direction

krj relative permeability of phase j

L system length

Lrep representative di�usive length scale

M mobility ratio

Me� e�ective mobility ratio

Mend end-point mobility ratio

Mshock shock front mobility ratio
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Mw molecular weight

N number of streamtubes

NX number of grid blocks in x-direction

NY number of grid blocks in y-direction

Np number of phases

NPe Peclet number

P pressure

Pc critical pressure

qi 
ow rate of ith streamtube

Q 
ow rate

Qtotal total 
ow rate

Sj saturation of phase j

Sw water saturation

s coordinate along a streamline

Tc critical temperature

TVD total variation diminishing

t time

tD dimensionless time

tDi dimensionless time of ith streamtube

uw;o water, oil Darcy velocity

uj Darcy velocity of phase j

ux Darcy velocity in the x-direction

uy Darcy velocity in the y-direction

Vc critical volume

VDP Dykstra{Parson coe�cient

VPi porevolume of ith streamtube

�VP porevolume used for scaling

vDi dimensionless velocity along ith streamtube

x Cartesian direction

xD dimensionless distance

xDi
dimensionless distance along ith streamtube
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y Cartesian direction

yA y-coordinate of streamline A

yB y-coordinate of streamline B

Greek and symbols

�L,�T longitudinal and transverse dispersivity

�tD dimensionless time intervall

�x size of grid block in x-direction

�y size of grid block in y-direction,

or di�erence in y-coordinate of streamlines at a �xed x

� coordinate along streamtube/streamline

� mobility

�c correlation length of permeability �eld

�x mobility in the x-direction

�y mobility in the y-direction

�j viscosity of phase j

�w;o;s water, oil, solvent viscosity

�j density of phase j

� standard deviation

�lnK standard deviation of log-permeability distribution

� porosity

� potential function

	 streamfunction


 complex potential

! Todd $ Longsta� parameter,

or acentric factor

!i mole fraction of component i

!ij mole fraction of component i in phase j
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Appendix A

Generating Permeability Fields

Although many sophisticated techniques exist to generate correlated permeability

�elds (Deutsch and Journel, 1992), a moving window method is used in this thesis

because of its simplicity and robustness. The underlying assumption is that the

permeability k is log-normally distributed. Thus, the probability that ln k is less

than or equal to some values x is given by

P (x) =
1

�
p
2�

Z
x

�1

e�
(t��)2

2�2 dt ; (A:1)

where � and �2 are the average and variance respectively of the random variable

x = ln k. The algorithm is as follows.

1. Setting up the grid. If the desired reservoir is to have NX by NY grid blocks,

then the actual grid used to �nd the correlated �eld must have (NX + IX) by

(NY + IY ) blocks, where (IX ��x) and (IY ��y) are greater than or equal

to the radii in the x- and y-directions of the moving window. �x is and �y

specify the size of each grid block. This will assure that all (NX �NY ) blocks

will be assigned an average value calculated from the same number of points.

2. Generating a spatially random uniform distribution. The easiest way to

accomplish this is to simply draw (NX+IX)� (NY +IY ) random values from

the closed interval [0; 1] and assign them sequentially to each grid block. In fact,

it is better to generate a uniform distribution by picking (NX+IX)�(NY +IY )

195
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equally spaced values from the open interval (0; 1) and assigning them randomly

to the grid blocks. The advantage is that the underlying distribution will always

be symmetrical and independent from the random number generator. The ran-

dom number is only used to pick a random location in space, but the numerical

value of the random number is discarded.

3. Normal transformation. This step is not strictly necessary, but it does add

clarity to the method and is therefore presented here. With all blocks having

been assigned a value between zero and one, the underlying uniform distribution

is transformed to a standardized normal distribution (� = 0; � = 1) by using

the inverse of the cumulative distribution function. Recall that the standardized

cumulative distribution function is de�ned as

�(u) =
1p
2�

Z
u

�1

e�
t
2

2 dt : (A:2)

Thus, for each point xi from the uniform distribution a point ui is found from

ui = ��1(xi) : (A:3)

The inversion, of course, is done numerically. A good source for expressions

approximating � and ��1 is Abramovitz and Stegun (1970).

4. Moving window. With the underlying distribution now being normal, but ran-

domly distributed, an ellipse is used as a moving window to �nd the correlated

�eld. The value for each block (�ui) is found by simply centering the ellipse on

the grid block and averaging all values (ui) that fall within the ellipse. The

resulting spatial correlation will then have a range equal to the diameters of

the ellipse. The resulting �eld is still normally distributed but with a standard

deviation less then one (�0 < 1) and a mean very close to zero (�0 � 0).

5. Transforming to absolute permeability. Finally, the averaged �eld is scaled

such that it has the desired standard deviation, or order of magnitude variation,

and average. If the average �eld values of part 4 are denoted by �ui and have

an average and standard deviation given by �� and �� then the transformation is
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given by
ln ki � �lnk

�ln k
=

�ui � ��

��
; (A:4)

where �ln k and �ln k and the desired values for the permeability �eld. The actual

permeability values are therefore found using

ki = exp
�
�ln k

��
(�ui � ��)

�
+ �ln k : (A:5)



Appendix B

Summaries of Relevant Papers

Muskat and Wycko�, 1932: A Theoretical Analysis of Water
ooding Networks

In this paper Muskat and Wycko� investigate the recovery e�ciency of well patterns using stream-
lines. Using an electrical conduction model, they consider a staggered line drive, a direct line drive,
a �ve-spot, and a seven-spot. The reservoir is considered homogeneous and tracer-
ow assumptions
are used for all calculations (although they discuss their results in terms of multi-phase 
ow). They
conclude that the staggered line drive has `the most favorable physical features'. It is interesting to
note though, that Muskat and Wycko� conclude their discussion by suggesting that well spacing and
arrangement may be of minor importance compared to the channeling caused by `high permeability
zones within the main body of sand'.
Contribution: Quantifying 
ood e�ciencies of four di�erent well patterns using streamtubes.

Higgins and Leighton, 1962 (11/61)1: A Computer Method to Calculate Two-Phase Flow in Any

Irregularly Bounded Porous Medium

This paper is generally considered as being the �rst to introduce streamtubes to model two-phase

ow in porous media. Higgins and Leighton acknowledge that complex well spacing have been
studied using `potentiometric' models before, but point out that these considered single phase 
ow
only. They test their two-phase approach for a �ve-spot against laboratory water
oods reported by
Douglas et al. (1959) as well as their `long method' for end-point viscosity ratios ranging from 0.083
to 754. They report good matches, though it is important to note that the relative permeability
curves they used (`permeability-saturation curves') give rise to rarefaction waves only. The Higgins
and Leighton method divides streamtubes into `sand elements' of equal volume. At the end of each
time step, the average mobility (actually referred to as average permeability in the paper) and geo-
metric shape factor are calculated for each sand element. The total resistance along each streamtube
(`channel') is then used to �nd the instantaneous 
ow rate. The streamtubes are calculated only
ones using a single phase formulation and the reservoir is assumed homogeneous.
Contribution: Two-phase 
ow solution accounting for changing mobility distribution along stream-
tubes.

Higgins and Leighton, 1962 (4/62): Computer Predictions of Water Drive of Oil and Gas Mixtures

Through Irregularly Bounded Media{Three Phase Flow

1The date in parentheses indicates when the work was �rst presented.
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In this paper, Higgins and Leighton extend their streamtube method to three phase 
ow. The one-
dimensional, three-phase 
ow solution is constructed by using the water-oil fractional 
ow to �nd
the two-phase mixed-wave solution and having the displaced oil and gas move ahead of the front by
assuming that no oil is displaced by the mobile gas. By considering several non-communicating layer
solutions, each of which can have di�erent petrophysical properties, Higgins and Leighton show a
good match for a particular �eld case.
Contribution:Three-phase 
ow solution along streamtubes.

Hauber, 1964: Prediction of Water
ood Performance for Arbitrary Well Patterns and Mobility Ra-

tios

Hauber presents general expressions for determining injectivity, time, and cumulative water injected
when the water-oil interface has moved a given distance along a streamtube. He introduces a distor-
tion factor for non-unit mobility ratio displacements to account for changing streamtube geometries
as the 
ood progresses. Although the title of this paper is promising and Hauber indeed presents a
rather `mathematical' approach, it is di�cult to follow his derivations, in part due to the confusing
notation.
Contribution: Analytical expressions to calculate injectivity, time, and cumulative water injected
for an arbitrary streamtube.

Higgins, Boley, and Leighton, 1964 (5/64): Aids to Forecasting the Performance of Water Floods

In this paper Higgins et al. extend their method presented in 1962 to a seven-spot, a direct line-
drive, and a staggered line-drive. The �ve-spot results �rst presented in 1962 are given as well. In
all cases the reservoir is considered homogeneous and streamtubes are calculated only once using the
single phase assumption. Five streamtubes with 40 cells each were used for each symmetry element
in the patterns investigated. In this paper Higgins et al. conclude that phase mobilities (Higgins
et al. call them permeabilities) have a greater in
uence on oil recovery than well spacing patterns.
Although never mentioned explicitly, it appears that they used straight line relative permeability
curves leading, as in their 1962 paper, to rarefaction waves only. It is interesting to note that they
also brie
y touch on how an unfavorable vertical permeability pro�le can be a dominating factor on
recovery but do not elaborate.
Contribution: Extension of streamtube approach to di�erent well patterns.

Doyle and Wurl, 1971 (10/69): Stream Channel Concept Applied to Water
ood Performance Cal-

culations For Multiwell, Multizone, Three-Component Cases

In this paper Doyle and Wurl extend the Higgins and Leighton streamtube approach to �elds that
have a non-regular well pattern. Streamtubes (`channels') are generated for the entire �eld and all
necessary information stored for each channel to allow displacement calculations. An example �eld
application is presented. Although Doyle and Wurl do not present any substantially new idea, the
paper conveys the simple and straightforward ideas of the streamtube approach though its clear
exposition.
Contribution: Application of streamtube solution to non-symmetrical well patterns.

LeBlanc and Caudle, 1971 (5/70): A Streamline Model for Secondary Recovery

This paper is, in essence, a rewrite of the original 1962 Higgins and Leighton paper, but improves on
the mathematical formulation of the problem. LeBlanc and Caudle generate the streamlines using
superposition and explicitly write-out the expressions for the x and y velocity components, something
Higgins and Leighton in fact never did. They also mention that each streamtube will see an equal
injected volume for the unit mobility case, thus eliminating any need of geometrical information
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about the streamtube. LeBlanc and Caudle use the center streamline for all their calculations. But
their claim of not having to know the entire streamlines is unsubstantiated . Although true for the
limiting unit mobility case, in all other cases they rely on the unit mobility streamlines (and thus
on knowledge about the entire 
ow �eld) to �nd the total resistance down each tube.
Contribution: Eliminating Higgins and Leighton geometrical shape factors.

Martin, Woo, and Wegner, 1973 (2/73): Failure of Stream Tube Methods to Predict Water
ood

Performance of an Isolated Five-Spot at Favorable Mobility Ratios

In this letter to JPT, Martin et al. argue that for favorable mobility ratios the streamtube approach
underestimates recovery due the fact that the streamlines in the watered-out region are almost
independent of the high-mobility region ahead of the water bank. They show that a better solution
is obtained by updating the tubes several times as the 
ood progresses. A nice graph is presented
showing the constant streamlines compared to the streamlines recalculated at some later time. The
idea is to recalculate the streamtubes, locate the old saturations onto the new streamtubes, and
continue the displacement calculations.
Contribution: Quantifying the error due to the constant streamtube assumption. Show improved
recovery prediction by updating streamtube periodically.

Parsons, 1972 (10/71): Directional Permeability E�ects in Developed and Uncon�ned Five-Spots

In this paper Parsons investigates the e�ect of directional permeability on unit mobility displace-
ments using streamlines. Contrary to previous authors, Parsons accumulates a `time-of-
ight' along
streamlines, with equal time-of-
ight points on di�erent streamlines delineating a 
ood front. Par-
sons presents a number of streamline maps for di�erent maximum permeability directions and
anisotropy ratios and clearly shows that anisotropy can substantially a�ect the displacement process.
This is particularly true for uncon�ned patterns.
Contribution: Investigation of the e�ect of areal anisotropy in permeability on recovery for unit
mobility displacements. Use of a time-of-
ight coordinate.

Martin and Wegner, 1979 (4/78): Numerical Solution of Multiphase, Two-Dimensional Incompress-

ible Flow Using Stream-Tube Relationships

In this paper Martin and Wegner quantify the error caused by the assumption of �xed streamtubes.
Although their title contains the word multi-phase, they only consider the two-phase immiscible
water
ood problem. By investigating mobility ratios ranging from 0:1 to 1000, they demonstrate
that the largest error occurs for favorable mobility ratios. They correctly attribute this to the large
mobility decrease across the water bank in the M = 0:1 case. It should be noted though, that the
relative permeabilities used by Martin and Wegner give rise to pure rarefaction waves in all unfa-
vorable mobility ratio cases. Finally, it is interesting to note that they mention how the problem of
numerical di�usion can be overcome using streamtubes. Unfortunately, they never actually quantify
this advantage of the streamtube approach.
Contribution: Investigation of the error caused by the �xed streamtube assumption.

Bommer and Schechter, 1979 (10/78): Mathematical Modeling of In-Situ Uranium Leaching

This paper is an interesting application of the streamtube method to uranium leaching. In particular,
the single phase, unit mobility type displacement involved in this application justi�es the constant
streamtube assumption. A component balance accounting for chemical reactions and physical dif-
fusion is then solved by �nite-di�erences along each streamtube. The area of interest is bounded
through the use of image wells which are placed using an algorithm developed by (Lin)1972. This
algorithm is not discussed in the paper. A homogeneous areal domain is assumed in this work.
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Contribution: One-dimensional �nite-di�erence solution along streamtubes. Application to ura-
nium leaching.

Lake, Johnston, and Stegemeier, 1981 (10/78): Simulation and Performance Prediction of a Large-

Scale Surfactant/Polymer Project

In this paper Lake et al. apply the streamtube method to surfactant/polymer 
ooding. Physical
data from laboratory experiments along with a layered geological model are used in a cross-sectional
�nite di�erence simulation to derive response functions for the displacement. These response func-
tions are then mapped onto streamtubes to capture the areal pattern of the 
ood as dictated by
well positions and rates. In this way the detailed physics describing the surfactant/polymer process
are kept intact for a �eld-scale simulation. Because the mobility is near unity for most cases, the
streamtubes are kept constant throughout the study. A homogeneous areal domain is assumed in
this work.
Contribution: Mapping of response functions obtained from representative cross-sections by de-
tailed �nite-di�erence simulation onto streamtubes.

Wang, Lake, and Pope, 1981 (10/81): Development and Application of a Streamline Micellar/Polymer

Simulator

In this paper, Wang et al. solve the concentration equations for a Micellar/Polymer by �nite di�er-
ences along streamlines. This is analogous to the approach used by (Bommer and Schechter)1979
to model a uranium leaching process. No vertical e�ects are included and the streamlines are con-
sidered �xed. Wang et al. include areal anisotropy and show that it can have a substantial impact
on recovery.
Contribution: Finite-di�erence solution of a Micellar/Polymer 
ood along streamlines.

Emanuel, Alameda, Behrens, and Hewett, 1989 (9/87): Reservoir Performance Prediction Methods

Based on Fractal Geostatistics

In this paper Emanuel et al. show four example applications (three CO2 
oods and one mature
water
ood) of the hybrid streamtube technique proposed by Lake et al. (1981). The cross-sectional
response function is found by detail �nite-di�erence simulation with a fractal description of the
porosity/permeability distribution and core
ood data. The areal streamtube solution accounts for
non-unit mobility ratios by updating the 
ow rates according to the total 
ow resistence, areal
permeability trends, and no-
ow boundaries. In all cases, Emanuel et al. show excellent agreement
with total �eld response. They include areal distributions of permeability/thickness values to �nd
areal streamtubes in order to improve speci�c well matches, but point out that the method is best
in predicting total �eld performance.
Contribution: Accounting for areal heterogeneity in the streamtube geometry. Example solutions
for four �eld cases.

Mathews, Emanuel, and Edwards, 1988 (10/88): A Modeling Study of the Mitsue Stage 1 Miscible

Flood Using Fractal Geostatistics; 1989 (10/88) Fractal Methods Improve Mitsue Miscible Predic-

tions

In these papers Mathews et al. present a study of the Mitsue Stage 1 miscible 
ood using stream-
tubes. This work follows very closely that of Emanuel et al. (1989). Mathews et al. show a
comparison of projections based on �nite-di�erence models (areal) and the streamtube method.
These projections are also compared to available �eld performance data.
Contribution: Comparison of �nite-di�erence pattern predictions with hybrid streamtube ap-
proach.
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Tang, Behrens, and Emanuel, 1989 (2/89): Reservoir Studies Using Geostatistics To Forecast Per-

formance

This paper presents two �eld scale examples (a water
ood and a CO2 
ood) of the streamtube
approach. The approach is the same as presented by Emanuel et al. (1989). Again, excellent agree-
ment with �eld data is demonstrated. In determining the cross-sectional response function, Tang et
al. varied the width of the cross-section in the �nite di�erence simulation in order to capture the
transition from radial 
ow near the wells to linear 
ow further away. In the presence of gravity, this
may be an important consideration. Furthermore, ten di�erent fractional 
ow curves where gener-
ated in order to account for varying CO2 slug sizes each streamtube sees because of the nonlinearity
of the problem.
Contribution: Multiple fractional 
ow functions to account for varying slug sizes in unfavorable
mobility cases.

Hewett and Behrens, 1991 (6/89): Scaling Laws in Reservoir Simulation and Their Use in a Hybrid

Finite Di�erence/Streamtube Approach to Simulating the E�ects of Permeability Heterogeneity

In this paper Hewett and Behrens present a detailed discussion on the scaling properties of hy-
perbolic conservation problems. Their work is clearly motivated by the opportunity of mapping
one-dimensional solutions along streamtubes. In particular, Hewett and Behrens show that for sin-
gle slug injections the solution is scalable by tD=tDs and xD=tDs, where tDs is the slug volume.
They also discuss alternating slug injections. Since the streamtube method traditionally requires
an averaged cross-sectional response, Hewett and Behrens discuss the in
uence of heterogeneity
on scaling laws. They show that, in general, heterogeneity causes scaling laws to fail, though in
some cases the permeability correlation length may be used as an additional scaling parameter to
give reasonably scaled solutions. Finally, they compare solutions obtained using streamtubes with
upscaled cross-sectional response functions and traditional �nite di�erence formulations with pseud-
ofunctions. Unfortunately they show no quantitative data for this comparison.
Contribution: Scaling of slug injections. Upscaling of cross-sections. Review of hyperbolic scaling
laws.

Renard, 1990 (2/90): A 2D Reservoir Streamtube EOR Model with Periodical Automatic Regener-

ation of Streamlines

In this paper Renard departs from the assumption of constant streamtubes. Instead, he period-
ically updates the streamtubes and redistributes the 
uids accordingly. Renard presents a micel-
lar/polymer example in which he compares �eld data with �xed and updated streamtube solutions.
The solution with updated streamtubes is closer to the �eld data then the one using �xed stream-
tubes. Unfortunately the paper is rather short and many question remain unanswered. For example,
it is unclear if the �xed streamtube solution accounts for the changing mobility ratio by distribut-
ing the total 
ow accordingly. By redistributing the 
uids, the initial conditions for the next time
step are clearly not going to be uniform anymore. Renard never speci�es how he determines the
one-dimensional solution along the streamtubes. Finally, the areal reservoir is composed of 9 homo-
geneous zones{an unlikely description for a real reservoir.
Contribution: Solution with periodic updating of streamtubes.

King, Blunt, Mans�eld, and Christie, 1993 (2/90): Rapid Evaluation of the Impact of Heterogeneity
on Miscible Gas Injection

In this paper King et al. use a modi�ed streamline approach to evaluate the impact of heterogeneity
on miscible displacements. They introduce a time-of-
ight coordinate to map the Todd & Longsta�
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model along each streamline, much in the same way as Parsons (1972) does to locate the position
of a tracer front. To account for the changing mobility �eld though, King et al. introduce a boost
factor which they determine by integrating from the inlet to the isobar of the the fastest �nger tip.
The streamlines though, are calculated only once. King et al. apply their technique to estimate the
uncertainty in recovery.
Contribution: Combining time-of-
ight idea with boost factor. Application to assessing uncer-
tainty due to reservoir heterogeneity.


